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We propose a Convolutional Neural Network (CNN)-

based model “RotationNet,” which takes multi-view images

of an object as input and jointly estimates its pose and ob-

ject category. Unlike previous approaches that use known

viewpoint labels for training, our method treats the view-

point labels as latent variables, which are learned in an un-

supervised manner during the training using an unaligned

object dataset. RotationNet is designed to use only a par-

tial set of multi-view images for inference, and this property

makes it useful in practical scenarios where only partial

views are available. Moreover, our pose alignment strat-

egy enables one to obtain view-specific feature representa-

tions shared across classes, which is important to maintain

high accuracy in both object categorization and pose esti-

mation. Effectiveness of RotationNet is demonstrated by its

superior performance to the state-of-the-art methods of 3D

object classification on 10- and 40-class ModelNet datasets.

We also show that RotationNet, even trained without known

poses, achieves the state-of-the-art performance on an ob-

ject pose estimation dataset.

1. Introduction

Object classification accuracy can be enhanced by the

use of multiple different views of a target object [4, 23]. Re-

cent remarkable advances in image recognition and collec-

tion of 3D object models enabled the learning of multi-view

representations of objects in various categories. However,

in real-world scenarios, objects can often only be observed

from limited viewpoints due to occlusions, which makes

it difficult to rely on multi-view representations that are

learned with the whole circumference. The desired prop-

erty for the real-world object classification is that, when a

viewer observes a partial set (≥ 1 images) of the full multi-

view images of an object, it should recognize from which

directions it observed the target object to correctly infer the
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Figure 1. Illustration of the proposed method RotationNet. Ro-

tationNet takes a partial set (≥ 1 images) of the full multi-view

images of an object as input and predicts its object category by

rotation, where the best pose is selected to ize the object

category likelihood. Here, viewpoints from which the images are

observed are jointly estimated to predict the pose of the object.

category of the object. It has been understood that if the

viewpoint is known the object classification accuracy can

be improved. Likewise, if the object category is known,

that helps infer the viewpoint. As such, object classifica-

tion and viewpoint estimation is a tightly coupled problem,

which can best benefit from their joint estimation.

We propose a new Convolutional Neural Network

(CNN) model that we call RotationNet, which takes multi-

view images of an object as input and predicts its pose and

object category (Fig. 1). RotationNet outputs viewpoint-

specific category likelihoods corresponding to all pre-

defined discrete viewpoints for each image input, and then

selects the object pose that izes the integrated object

category likelihood. Whereas, at the training phase, Ro-

tationNet uses a complete set of multi-view images of an

object captured from all the pre-defined viewpoints, for in-

ference it is able to work with only a partial set of all the

multi-view images – a single image at minimum – as input.

In addition, RotationNet does not require the multi-view im-

ages to be provided at once but allows their sequential input
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and updates of the target object’s category likelihood. This

property is suitable for applications that require on-the-fly

classification with a moving camera.

The most representative feature of RotationNet is that

it treats viewpoints where training images are observed as

latent variables during the training (Fig. 2). This enables

unsupervised learning of object poses using an unaligned

object dataset; thus, it eliminates the need of preprocessing

for pose normalization that is often sensitive to noise and

individual differences in shape. Our method automatically

determines the basis axes of objects based on their appear-

ance during the training and achieves not only intra-class

but also inter-class object pose alignment. Inter-class pose

alignment is important to deal with joint learning of object

pose and category, because the importance of object classifi-

cation lies in emphasizing differences in different categories

when their appearances are similar. Without inter-class pose

alignment, it may become an ill-posed problem to obtain a

model to distinguish, e.g., a car and a bus if the side view of

a car is compared with the frontal view of a bus.

Our main contributions are described as follows. We

first show that RotationNet outperforms the current state-

of-the-art classification performance on 3D object bench-

mark datasets consisting of 10- and 40-categories by a large

margin (Table 5). Next, even though it is trained without

the ground-truth poses, RotationNet achieves superior per-

formance to previous works on an object pose estimation

dataset. We also show that our model generalizes well to

a real-world image dataset that was newly created for the

general task of multi-view object classification.Finally, we

train RotationNet with the new dataset named MIRO and

demonstrate the performance of real-world applications us-

ing a moving USB camera or a head-mounted camera (Mi-

crosoft HoloLens) in our supplementary .

2. Related work

There are two main approaches for the CNN-based 3D

object classification: voxel-based and 2D image-based ap-

proaches. The earliest work on the former approach is 3D

ShapeNets [39], which learns a Convolutional Deep Belief

Network that outputs probability distributions of binary oc-

cupancy voxel values. Latest works on similar approaches

showcased improved performance [21, 20, 38]. Even when

working with 3D objects, 2D image-based approaches are

shown effective for general object recognition tasks. Su et

al. [34] proposed multi-view CNN (MVCNN), which takes

multi-view images of an object captured from surround-

ing virtual cameras as input and outputs the object’s cat-

egory label. Multi-view representations are also used for

3D shape retrieval [1]. Qi et al. [25] gives a comprehen-

sive study on the voxel-based CNNs and multi-view CNNs

for 3D object classification. Other than those above, point-

based approach [11, 24, 15] is recently drawing much atten-

tion; however, the performance on 3D object classification

is yet inferior to those of multi-view approaches. The cur-

rent state-of-the-art result on the ModelNet40 benchmark

dataset is reported by Wang et al. [37], which is also based

on the multi-view approach.

Because MVCNN integrates multi-views in a view-

pooling layer which lies in the middle of the CNN, it re-

quires a complete set of multi-view images recorded from

all the pre-defined viewpoints for object inference. Unlike

MVCNN, our method is able to classify an object using a

partial set of multi-view images that may be sequentially

observed by a moving camera. Elhoseiny et al. [9] explored

CNN architectures for joint object classification and pose

estimation learned with multi-view images. Whereas their

method takes a single image as input for its prediction, we

mainly focus on how to aggregate predictions from multiple

images captured from different viewpoints.

Viewpoint estimation is significant in its role in improv-

ing object classification. Better performance was achieved

on face identification [45], human action classification [7],

and image retrieval [36] by generating unseen views after

observing a single view. These methods “imagine” the ap-

pearance of objects’ unobserved profiles, which is innately

more uncertain than using real observations. Sedaghat et

al. [29] proposed a voxel-based CNN that outputs orienta-

tion labels as well as classification labels and demonstrated

that it improved 3D object classification performance.

All the methods mentioned above assume known poses

in training samples; however, object poses are not always

aligned in existing object databases. Novotny et al. [22]

proposed a viewpoint factorization network that utilizes rel-

ative pose changes within each sequence to align objects in

s in an unsupervised manner. Our method also aligns

object poses via unsupervised viewpoint estimation, where

viewpoints of images are treated as latent variables during

the training. Here, viewpoint estimation is learned in an un-

supervised manner to best promote the object categorization

task. In such a perspective, our method is related to Zhou et

al. [44], where view synthesis is trained as the “meta”-task

to train multi-view pose networks by utilizing the synthe-

sized views as the supervisory signal.

Although joint learning of object classification and pose

estimation has been widely studied [28, 19, 42, 2, 35], inter-

class pose alignment has drawn little attention. However, it

is beneficial to share view-specific appearance information

across classes to simultaneously solve for object classifica-

tion and pose estimation. Kuznetsova et al. [17] pointed

out this issue and presented a metric learning approach that

shares visual components across categories for simultane-

ous pose estimation and class prediction. Our method also

uses a model with view-specific appearances that are shared

across classes; thus, it is able to maintain high accuracy for

both object classification and pose estimation.
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Figure 2. Illustration of the training process of RotationNet, where the number of views M is 3 and the number of categories N is 2. A

training sample consists of M images of an unaligned object and its category label y. For each input image, our CNN (RotationNet) outputs

M histograms with N + 1 bins whose norm is 1. The last bin of each histogram represents the “incorrect view” class, which serves as a

weight of how likely the histogram does not correspond to each viewpoint variable. According to the histogram values, we decide which

image corresponds to views 1, 2, and 3. There are three candidates for view rotation: (1, 2, 3), (2, 3, 1), and (3, 1, 2). For each candidate,

we calculate the score for the ground-truth category (“car” in this case) by multiplying the histograms and selecting the best choice: (2,

3, 1) in this case. Finally, we update the CNN parameters in a standard back-propagation manner with the estimated viewpoint variables.

Note that it is the same CNN that is being used.

3. Proposed method

The training process of RotationNet is illustrated in

Fig. 2. We assume that multi-view images of each training

object instance are observed from all the pre-defined view-

points. Let M be the number of the pre-defined viewpoints

and N denote the number of target object categories. A

training sample consists of M images of an object {xi}
M
i=1

and its category label y ∈ {1, . . . , N}. We attach a view-

point variable vi ∈ {1, . . . ,M} to each image xi and set

it to j when the image is observed from the j-th viewpoint,

i.e., vi ← j. In our method, only the category label y is

given during the training whereas the viewpoint variables

{vi} are unknown, namely, {vi} are treated as latent vari-

ables that are optimized in the training process.

RotationNet is defined as a differentiable multi-layer

neural network R(·). The final layer of RotationNet is the

concatenation of M softmax layers, each of which out-

puts the category likelihood P (ŷi | xi, vi = j) where j ∈
{1, . . . ,M} for each image xi. Here, ŷi denotes an esti-

mate of the object category label for xi. For the training of

RotationNet, we input the set of images {xi}
M
i=1 simultane-

ously and solve the following optimization problem:

max
R,{vi}M

i=1

M
�

i=1

P (ŷi = y | xi, vi). (1)

The parameters of R and latent variables {vi}
M
i=1 are opti-

mized to output the highest probability of y for the input of

multi-view images {xi}
M
i=1.

Now, we describe how we design P (ŷi | xi, vi) out-

puts. First of all, the category likelihood P (ŷi = y | xi, vi)
should become close to one when the estimated vi is cor-

rect; in other words, the image xi is truly captured from the

vi-th viewpoint. Otherwise, in the case that the estimated

vi is incorrect, P (ŷi = y | xi, vi) may not necessarily

be high because the image xi is captured from a different

viewpoint. As described above, we decide the viewpoint

variables {vi}
M
i=1 according to the P (ŷi = y | xi, vi) out-

puts as in (1). In order to obtain a stable solution of {vi}
M
i=1

in (1), we introduce an “incorrect view” class and append

it to the target category classes. Here, the “incorrect view”

class plays a similar role to the “background” class for ob-

ject detection tasks, which represents negative samples that

belong to a “non-target” class. Then, RotationNet calculates

P (ŷi | xi, vi) by applying softmax functions to the (N+1)-

dimensional outputs, where
�N+1

ŷi=1 P (ŷi | xi, vi) = 1.

Note that P (ŷi = N + 1 | xi, vi), which corresponds to

the probability that the image xi belongs to the “incorrect

view” class for the vi-th viewpoint, indicates how likely it

is that the estimated viewpoint variable vi is incorrect.

Based on the above discussion, we substantiate (1) as

follows. Letting Pi =
�

p
(i)
j,k

�

∈ R
M×(N+1)
+ denote a matrix

composed of P (ŷi | xi, vi) for all the M viewpoints and

N + 1 classes, the target value of Pi in the case that vi is

correctly estimated is defined as follows:

p
(i)
j,k =

�

1 (j = vi and k = y) or (j �= vi and k = N + 1)

0 (otherwise).

(2)

In this way, (1) can be rewritten as the following cross-

entropy optimization problem:

max
R,{vi}M

i=1

M
�

i=1

⎛

⎝log p(i)vi,y
+

�

j �=vi

log p
(i)
j,N+1

⎞

⎠ . (3)
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If we fix {vi}
M
i=1 here, the above can be written as a sub-

problem of optimizing R as follows:

max
R

M
�

i=1

⎛

⎝log p(i)vi,y
+

�

j �=vi

log p
(i)
j,N+1

⎞

⎠ , (4)

where the parameters of R can be iteratively updated via

standard back-propagation of M softmax losses. Since

{vi}
M
i=1 are not constant but latent variables that need to

be optimized during the training of R, we employ alternat-

ing optimization of R and {vi}
M
i=1. More specifically, in

every iteration, our method determines {vi}
M
i=1 according

to Pi obtained via forwarding of (fixed) R, and then update

R according to the estimated {vi}
M
i=1 by fixing them.

The latent viewpoint variables {vi}
M
i=1 are determined

by solving the following problem:

max
{vi}M

i=1

M
�

i=1

⎛

⎝log p(i)vi,y
+

�

j �=vi

log p
(i)
j,N+1

⎞

⎠

= max
{vi}M

i=1

M
�

i=1

⎛

⎝log p(i)vi,y
+

M
�

j=1

log p
(i)
j,N+1 − log p

(i)
vi,N+1

⎞

⎠

= max
{vi}M

i=1

M
�

i=1

p
(i)
vi,y

p
(i)
vi,N+1

, (5)

in which the conversion used the fact that
�M

j=1 log p
(i)
j,N+1

is constant w.r.t. {vi}
M
i=1. Because the number of can-

didates for {vi}
M
i=1 is limited, we calculate the evalua-

tion value of (5) for all the candidates and take the best

choice. The decision of {vi}
M
i=1 in this way emphasizes

view-specific features for object categorization, which con-

tributes to the self-alignment of objects in the dataset.

In the inference phase, RotationNet takes as input M ′

(1 ≤ M ′ ≤ M) images of a test object instance, either si-

multaneously or sequentially, and outputs M ′ probabilities.

Finally, it integrates the M ′ outputs to estimate the category

of the object and the viewpoint variables as follows:

�

ŷ, {v̂i}
M ′

i=1



= arg max
y,{vi}M′

i=1

M ′

�

i=1

p
(i)
vi,y

p
(i)
vi,N+1

. (6)

Similarly to the training phase, we decide {v̂i}
M ′

i=1 accord-

ing to the outputs {Pi}
M ′

i=1. Thus RotationNet is able to

estimate the pose of the object as well as its category label.

Viewpoint setups for training While choices of the

viewpoint variables {vi}
M ′

i=1 can be arbitrary, we consider

two setups in this paper, with and without an upright ori-

entation assumption, similarly to MVCNN [34]. The for-

mer case is often useful with images of real objects captured

case (i) case (ii) case (iii)

Figure 3. Illustration of three viewpoint setups considered in this

work. A target object is placed on the center of each circle.

with one-dimensional turning tables, whereas the latter case

is rather suitable for unaligned 3D models. We also consider

the third case that is also based on the upright orientation

assumption (as the first case) but with multiple elevation

levels. We illustrate the three viewpoint setups in Fig. 3.

Case (i): with upright orientation In the case where we

assume upright orientation, we fix a specific axis as the ro-

tation axis (e.g., the z-axis), which defines the upright ori-

entation, and then place viewpoints at intervals of the angle

θ around the axis, elevated by φ (set to 30◦ in this paper)

from the ground plane. We set θ = 30◦ in default, which

yields 12 views for an object (M = 12). We define that

“view m+1” is obtained by rotating the view position “view

m” by the angle θ about the z-axis. Note that the view ob-

tained by rotating “view M” by the angle θ about the z-axis

corresponds to “view 1.” We assume the sequence of in-

put images is consistent with respect to a certain direction

of rotation in the training phase. For instance, if vi is m

(m < M), then vi+1 is m + 1. Thus the number of candi-

dates for all the viewpoint variables {vi}
M
i=1 is M .

Case (ii): w/o upright orientation In the case where we

do not assume upright orientation, we place virtual cameras

on the M = 20 vertices of a dodecahedron encompassing

the object. This is because a dodecahedron has the largest

number of vertices among regular polyhedra, where view-

points can be completely equally distributed in 3D space.

Unlike case (i), where there is a unique rotation direction,

there are three different patterns of rotation from a certain

view, because three edges are connected to each vertex of a

dodecahedron. Therefore, the number of candidates for all

the viewpoint variables {vi}
M
i=1 is 60 (= 3M )1.

Case (iii): with upright orientation and multiple eleva-

tion levels This case is an extension of case (i). Un-

like case (i) where the elevation angle is fixed, we place

virtual cameras at intervals of φ in [−90◦, 90◦]. There

are M = Ma × Me viewpoints, where Ma = 360◦

θ
and

Me = 180◦

φ
+ 1. As with the case (i), the number of can-

didates for all the viewpoint variables {vi}
M
i=1 is Ma due to

the upright orientation assumption.

1A dodecahedron has 60 orientation-preserving symmetries.
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