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Extending Figlewski’s option pricing formula

One of the uses of an option pricing model is to infer the price of an

option from the market price of a “nearby” option. For example, given

the Black-Scholes option pricing formula and the market price of an

option it is possible to calculate the Black-Scholes implied volatility.

This volatility can be substituted back into the Black-Scholes pricing

formula to give the price of any other derivative.

As Figlewski (2002) has pointed out, if the option pricing model is

to be used in this way then there is nothing special about the Black-

Scholes equation and any function with the right shape, could in prin-

ciple be used instead. Figlewski suggests a simple alternative function.

Unfortunately his proposed function violates static arbitrage. We

suggest a simple modification which corrects for this deficiency. We

also show how to incorporate maturity into the pricing model. Once

maturity is included in the model it is possible to infer the dynamics

of the underlying which are consistent with the pricing equations.

We also undertake a numerical investigation of the fit of both the

Figlewski model and our modified version. In doing so, we often reach

the same conclusions as Figlewski, but interestingly, we also sometimes

find the opposite results.
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The Black and Scholes (1973) model for option pricing is the industry

standard and won its inventors a Nobel prize. Despite its widespread use,

the theoretical underpinnings of the model are often violated in practice.

Volatility is not constant, and is widely documented to exhibit smiles and

skews, see Rubinstein (1985).

One of the uses of an option pricing model is to infer an option price from

market prices of “nearby” options, perhaps involving a similar strike or time

to maturity. In the Black and Scholes (1973) model this is accomplished via

implied volatility. For example yesterday’s implied volatility might be used

to compute an option price today or an option price might be calculated

from interpolation between implied volatilities of two options with strikes

spanning the strike of interest.

The recent paper of Figlewski (2002) recognizes that this usage of the

Black-Scholes option pricing formula does not rely on its precise form. In

fact any function of the right shape could be used in its place. Figlewski

compares the Black-Scholes formula with an “informationally passive” al-

ternative model, which, following Figlewski, we refer to as the FIG model1.

The point is that the FIG model is not chosen to provide a best fit, but

rather is a simplest attempt at finding a pricing function of approximately

the right shape.

There are two distinct usages of the Black-Scholes model. In the first

usage a trader calculates the implied volatility from a single option and uses

that volatility to calculate the price of a related security. (For each different

security the trader wishes to price he might calibrate with a different option.)

In the second usage the trader calculates the best-fit implied volatility from

1Here FIG can either be taken as an acronym for flexible implied G or an abbreviation

of the author’s surname.
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a set of traded options of different strikes, and uses that volatility to give

prices for each of a different set of options. The first of these approaches

recognizes that market data admits smiles and skews and allows the trader

to account for this. However, in doing this the trader is being inconsistent

in his use of Black-Scholes. On the one hand he is assuming that volatility

is constant (when applying the Black-Scholes pricing function) and on the

other he is assuming that different volatilities can be applied in different

cases. The second situation suffers no such inconsistency, but then the

trader cannot match his model to market data, he can only give a best fit.

Figlewski (2002) tests his alternative model against Black-Scholes in both

of these usages. In the first case he uses today’s option value to predict the

price tomorrow of an option with the same strike and maturity. In the

second case he uses today’s prices of all the options of a given maturity to

calculate a best fit volatility, which is then used to predict tomorrow’s prices

for those same options.

Figlewski finds that his model provides roughly as good a fit to the data

as the Black-Scholes model. In the first case, when the Black-Scholes model

is used inconsistently, it tends to outperform the passive alternative, whereas

when Black-Scholes is used consistently, the FIG model provides a better

fit.

Unfortunately the model FIG admits simple arbitrage. For market pa-

rameters (based on the data used both by Figlewski and in this paper) the

Figlewski model would give a price ranging from 50 cents to $2 for a put

option with zero strike, which must by necessity be worthless.

With this in mind, our paper makes at least four contributions to the

literature. Firstly we propose a modified “informationally passive” model
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MFIG, satisfying static arbitrage constraints.2 Secondly, we show how to in-

corporate a time parameter into both the FIG and MFIG models to produce

models FIGT and MFIGT. This allows us to compare options of different

maturities as well as different strikes. Thirdly, we show how knowledge of

the option price functions given by FIGT and MFIGT can be used to calcu-

late implicit dynamics for the underlying process. Here we use the approach

of Dupire (1993,1994). Fourthly, in addition to these theoretical contribu-

tions, we test the performance of our model empirically against both the

Figlewski and Black-Scholes models.

For this empirical test we use the same dataset as Figlewski (2002),

namely traded options on the S&P 500 over the period January 2nd, 1991

to December 29th, 1995.3 This is so that we can compare our results to his

directly.

We find that the modified model gives very similar performance to

Figlewski’s original model. In general MFIG outperforms the Black-Scholes

model in exactly the same situations as the original Figlewski model. More

especially if an implied volatility is calculated for each option then Black-

Scholes outperforms both the FIG and MFIG models. However if Black-

Scholes is used consistently then FIG and MFIG both outperform the Black-

2In defence of Figlewski’s (2002) original model, although the model misprices a put

with with zero strike at $2 and MFIG prices it at zero, over the range of traded options,

the differences between the two models are very small. To this extent, the fact that FIG

admits static arbitrage can be viewed as a theoretical problem that has little impact in

practice. Indeed, we also find many circumstances in which FIG provides a better fit to

data than MFIG.
3There is good reason to believe that both of the models FIG and MFIG would fit

option price data with a symmetric smile, such perhaps as currency option data, better

than index option data for which implied volatilities display a skew.
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Scholes pricing function.

We find that both FIG and MFIG fit best for low strike options (in-

the-money calls and out-of-the-money puts). This is the exact opposite of

the behavior reported by Figlewski (2002). We are not able to explain how

Figlewski obtains the opposite result from the same dataset. Instead, we

give a plausible explanation, using the implied volatility smile and skew of

the data, of why the results we report fit with market behavior.

The paper is organized as follows. Static no-arbitrage criteria and the

Black and Scholes (1973) option pricing model are given in Section 1. In

Section 2, we describe the Figlewski (2002) model and our proposed modified

model. These models are extended to allow for maturity dependence in

Section 3. Section 4 describes the data used in the empirical testing of

the pricing models. Our modified models are tested against the Black and

Scholes (1973) pricing formula and the model of Figlewski (2002) in Section

5 and the results reported in terms of RMSE. In the penultimate section

we discuss these results and give explanations where appropriate, before we

conclude in a final section. The origins of the form of the proposed option

pricing functions are given in the Appendix.

1 Static No-Arbitrage Properties

Let C denote the price of a European call option on the stock index level

St, with strike X, maturity T and riskless rate r. We can write

C = C(t, St, T,X) = e−r(T−t)
Et(ST − X)+ (1)

where t is the current time, ST the realized value of the index at maturity

and expectations are taken with respect to the risk-neutral measure. We
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assume S has been adjusted for dividends. When we think of a fixed option

with given strike and maturity, perhaps when deriving a pricing equation for

C, it is usual to think of C = CT,X(t, St) as a function of current time and

index level. Conversely when we think of the market prices of a family of

traded options at a fixed moment in time we should think of C = Ct,St(T,X)

as a function of strike and maturity. The same ideas apply to the price

P = P (t, St, T,X) = PT,X(t, St) = Pt,St(T,X) of a put option.

There are a number of important properties that option prices must

satisfy in order to exclude simple static arbitrages. Merton (1973) derives

these properties for stock options. In order to exclude static arbitrages we

must have (i)-(iv):

(i) Ct,St(T,X) is a decreasing, convex function of the strike.

(ii) The current price of a call option with zero strike is equal to the stock

price

Ct,St(T, 0) = lim
X↓0

Ct,St(T,X) = St.

(iii) The call value is increasing in maturity: for T ≥ T̂ ≥ t

Ct,St(T,Xer(T−t)) ≥ Ct,St(T̂ ,Xer(T̂−t)).

(iv) Put-call parity holds

Ct,St(T,X) − Pt,St(T,X) = St − Xe−r(T−t).

It is also the case that for any model for which option prices are consistent

with (1):

(v) Far out-of-the-money call prices approach zero

lim
X↑∞

Ct,St(T,X) = 0.
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(vi) At-the-money options have positive time value, for T > 0

Ct,St(T, Ste
r(T−t)) > 0.

Many of these properties have analogous forms for the call price function

CT,X(t, St). In particular,

(vii) CT,X(t, St) is an increasing, convex function of the asset price.

(viii) Far out-of-the-money call prices approach zero

CT,X(t, 0) = lim
St↓0

CT,X(t, St) = 0.

(ix) Far in-the-money call prices approach the value of a long forward con-

tract with the same strike

lim
St↑∞

{

CT,X(t, St) − (St − e−r(T−t)X)
}

= 0.

The Black and Scholes (1973) call option pricing formula, which satisfies

properties (i)-(ix) is given by

C(t, St,X, T ) = C = StN(d+) − Xe−r(T−t)N(d−) (2)

where σ is the volatility of the stock price and

d± =
ln(Ste

rτ/X) ± (σ2τ/2)

σ
√

τ
.

Here τ = T − t is the time to maturity. The put price is given via put-call

parity in (iv).

Figure 1 plots the Black and Scholes (1973) call pricing formula. The

graph on the left plots option prices as a function of St and the rightmost

graph plots prices as a function of strike X. Parameter values are chosen to

be typical of the data analyzed in later sections.
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Figure 1: The Black-Scholes call price. The left graph plots price as a

function of St whilst the right graph plots price as a function of strike for a

fixed value of St. In both cases the current time t and maturity T are fixed.

2 The Figlewski model and Arbitrage-free Modi-

fications

In the previous section we wrote down a minimal list of conditions that an

option pricing function must satisfy in order to preclude arbitrage. In this

section we describe the FIG model, show that it fails to satisfy some of these

conditions and propose a modification MFIG which satisfies all properties

(i)-(ix) of Section 1.

Let fG
t,St

(T,X) denote the time t price of a call on stock index level St,

with strike X, maturity T , riskless rate r, and parameterized by G. This call

pricing function must satisfy (i)-(iii). Suppose fG
t,St

(T,X) is increasing in G
so that G plays the role of an implied volatility parameter. Then, given a

market call price we can infer G and substitute this back into the formula to

price a related option. For example given today’s market price of an option

we can infer the implied value of G and use it to give a price tomorrow for
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an option with the same strike and maturity. (Of course the value of the

index may have changed during this period.)

Figlewski (2002) uses the function

FIGG
t,St

(T,X) =

√

G +
(St − Xe−r(T−t))2

4
+

(St − Xe−r(T−t))

2
(3)

which we refer to as the FIG model. Put-call parity in (iv) defines the put

price to be

FIGG
t,St

(T,X) − (St − Xe−r(T−t)).

However, notice that if the strike approaches zero in the FIG model (3),

FIGG
t,St

(T, 0) = lim
X↓0

FIGG
t,St

(T,X) =

√

G +
S2

t

4
+

St

2
> St

for G > 04. Thus this choice of function is inadmissible as a call price

function as property (ii) is violated and the FIG model admits arbitrage.

In particular, there is a difference between the price of a call option on the

stock with strike zero and a unit of the stock itself.5

We propose instead to use the modified function

MFIGg
t,St

(T,X) =

√

gSt +
(St − Xe−r(T−t) − g)2

4
+

St − Xe−r(T−t) − g

2
(4)

which we refer to as the MFIG model6. Here g plays the role of the implied

4Note that if we think instead of the call price as a function of current time and the

index level St, then property (viii) does not hold for the FIG model. We have

FIG
G
T,X(t, 0) = lim

St↓0
FIG

G
T,X(t, St) > 0.

5The problem with a model with call prices given by the function FIG is that it is

consistent with a price process which can go negative.
6The modified flexible implied G model
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volatility parameter. For this function

MFIGg
t,St

(T, 0) = lim
X↓0

MFIGg
t,St

(T,X) = St

and if put prices are given by put-call parity then MFIG satisfies all the

necessary conditions for no-arbitrage.

In general it is quite difficult to construct option pricing functions sat-

isfying the no-arbitrage properties (i)-(iii). A motivation and origin for the

choice of both of the functions FIG and MFIG is explained in the appendix.

These ideas allow us to construct a family of candidate pricing functions.

However, as Figlewski is careful to point out, the aim is not to find a best-fit

model, but rather to compare the Black-Scholes model against a typical, or

rather the simplest, alternative model satisfying no-arbitrage.

3 Time Dependence and Price Dynamics

Unlike the Black and Scholes (1973) pricing formulas, the FIG and MFIG

models do not explicitly depend on the option maturity, apart from in the

discounting terms.

We can adjust both models to include a maturity dependence. The

simplest way to do this is to replace the constant parameters G and g with

the functions (T − t)G and (T − t)g which are proportional in time7. We get

FIGTG
t,St

(T,X) =

√

G(T − t) +
(St − Xe−r(T−t))2

4
+

(St − Xe−r(T−t))

2
(5)

7More generally we could have used any increasing functions of time to maturity, but

our aim is to give the simplest possible extension to the time varying case.
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and

MFIGT g
t,St

(T,X) =

√

gSt(T − t) +
(St − Xe−r(T−t) − g(T − t))2

4

+
St − Xe−r(T−t) − g(T − t)

2
(6)

We refer to (5) and (6) as time modified FIG and MFIG, respectively.

One reason for introducing maturity dependence is to allow us to com-

pare options with different times to expiry. The second and more funda-

mental reason is to better understand the model.

In his paper Figlewski (2002) states that, unlike the situation in the

Black-Scholes model, using his informationally passive alternative requires

making no assumptions about the dynamics of the underlying process. How-

ever, as we shall see, once maturity has been introduced into the pricing

model then the dynamics for the underlying have been specified. Even if

maturity is not introduced into the model, then to be consistent the pric-

ing function must have an extension to include maturities, and hence must

belong to a severely restricted class of candidate price processes.

In the subsequent analysis we follow Dupire (1993,1994). Under the

assumption that the underlying price process is a diffusion, and given Euro-

pean call prices Ct,St(T,X), then the risk neutral price process for the spot

is fully determined. There is a unique diffusion coefficient ac(Su, u) such

that the index level follows the stochastic differential equation

dSu = rSudu + ac(Su, u)dWu (7)

under the risk neutral probability measure. In fact, the implied dynamics

depend on the current call prices, and we can write

ac(x, u) =

√

√

√

√2

(

∂Ct,St
(T,X)

∂T
+ rX

∂Ct,St
(T,X)

∂X
∂2Ct,St

(T,X)

∂X2

)

∣

∣

∣

∣

∣

∣

X=x,T=u

(8)
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where Ct,St(T,X) is the call price function, thought of as a function of strike.

The dynamics for the index level under the time modified FIG model

can be calculated using (8) and (5) as the call pricing function. The index

follows (7) with

ac(Su, u) =

√

4

u − t

(

G(u − t)e2r(u−t) +
(Ster(u−t) − Su)2

4

)

(9)

Similarly, the index level under the time modified MFIG model follows

(7) with

ac(Su, u) =

√

2D2e2r(u−t)(St + Sue−r(u−t) + g(u − t) − 2D)

St(u − t)
(10)

where D2 = gSt(u − t) + (St−Sue−r(u−t)−g(u−t))2

4 .

Notice first the contrast between the diffusion coefficients driving the

index level under these two models and the Samuelson (1965) model used for

the Black and Scholes (1973) option pricing equation. Under the Samuelson

model,

dSu = rSudu + σSudWu

so ac(Su, u) = σSu with σ constant. In both time modified models, the

diffusion coefficients (9) and (10) depend upon the constant parameters G

and g, current index level Su, but also on current time, and the initial index

level St. Hence, although the option pricing functions (5) and (6) are not

too complicated, the implied index dynamics consistent with these functions

are much more complicated than the lognormal model of Samuelson (1965)

and Black and Scholes (1973).

Now compare the dynamics for the index under the two time modified

models FIG and MFIG. Notice that for the FIGT model,

ac(0, u) > 0
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whereas for the time modified MFIG model,

ac(0, u) = 0.

In particular, in the time extended FIG model, when the index hits zero

its diffusion coefficient is non-zero and the price process can and does go

negative. Conversely, in the modified model, MFIGT, when the index first

hits zero, the diffusion coefficient is also zero and the process stops. This

explains why the FIG model gives positive value to put options with zero

strike, whereas MFIG correctly gives a zero value to these options.

4 The Data

The data used in this study is daily data on S&P 500 index options taken

from the Berkeley Options Database. Option prices correspond to the av-

erage of the last bid and ask quotes reported before 3:00PM CST. We also

use values of the S&P500 index, dividend payout on the S&P 500 over the

remaining option life and riskless interest rates. The data runs from January

2nd, 1991 to December 29, 1995.

The data is the same as used by Figlewski (2002). This allows us to

make a direct comparison with his results.

We construct a dividend adjusted index value by subtracting the present

value of the dividends over the remaining option life from the raw series.

This dividend adjusted series is used in place of the raw series. The interest

rate is LIBOR obtained from the British Bankers Association, interpolated

between adjacent months. We disregarded any observations where option

prices violated arbitrage bounds or where implied volatilities were unable

to be calculated. There were also a very small number of observations with
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