
实验1 MYSQL数据库SQL语句练习实验

实验类别：验证性 实验级别：必做

开课单位：计算机与软件学院 实验时数：12学时

一、实验目的：

1、了解DBMS 系统的功能、软件组成；

2、掌握利用SQL 语句定义、操纵数据库的方法。

二、实验要求：

1、在课外安装相关软件并浏览软件自带的帮助文件和功能菜单，了解DBMS 的功能、结构；

2、创建一个有两个关系表的数据库；(建议采用MYSQL)

3、数据库、关系表定义；

4、学习定义关系表的约束(主键、外键、自定义);

5、了 解SQL 的数据定义功能；

6、了解SQL 的操纵功能；

7 、 掌握典型的SQL 语句的功能；

8、 了解视图的概念；

三、实验设备：

计算机、数据库管理系统如MYSQL等软件。

四、建议的实验步骤：

0、安装MYSQL 软件。见附件1

1、使用SQL 语句建立关系数据库模式及数据如下；(注：数据要自己输入)

EMP:
EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

7369 SMITH CLERK 7902 17-Dec-90 13750 20

7499 ALLEN SALESMAN 7698 20-FEB-89 19000 6400 30

7521 WARD SALESMAN 7698 22-FEB-93 18500 4250 30

7566 JONES MANAGER 7839 02-APR-89 26850 20

7654 MARTIN SALESMAN 7698 28-SEP-97 15675 3500 30

7698 BLAKE MANAGER 7839 01-MAY-90 24000 30

7782 CLARK MANAGER 7839 09-JUN-88 27500 10

7788 SCOTT ANALYST 7566 19-APR-87 19500 20

7839 KING PRESIDENT 17-NOV-83 82500 10

7844 TURNER SALESMAN 7698 08-SEP-92 18500 6250 30

7876 ADAMS CLERK 7788 23-MAY-96 11900 20

7900 JAMES CLERK 7698 03-DEC-95 12500 30

7902 FORD ANALYST 7566 03-DEC-91 21500 20

7934 MILLER CLERK 7782 23-JAN-95 13250 10

3258 GREEN SALESMAN 4422 24-Jul-95 18500 2750 50

4422 STEVENS MANAGER 7839 14-Jan-94 24750 50
6548 BARNES CLERK 4422 16-Jan-95 11950 50

DEPT:
DEPTNO DNAME LOC

10 ACCOUNTING LONDON

20 RESEARCH PRESTON

30 SALES
LIVERPOOL

40 OPERATIONS
STAFFORD

50 MARKETING LUTON

2、用 SQL 定义数据库的关系表；

注：(每位同学在各自创建的图表名字后面添加自己学号以示区分，如EMP20170000112 等)

3、定义各个关系的字段和自定义的数据完整性约束；

4、确定关系表的主键、外键；

5、对照帮助文件和教材理解主键和外键的约束规则；

6、分别为关系表添加记录；

7、理 解SQL 语句和关系运算的关系；

8 、练习典型的 SQL 语句，对第6步实验中已建立的表做查询、插入、更新、删除等操作；

完成练习题。

9、检查同学作业的思考题是否存在问题。

注：以上具体步骤可参见帮助文件SQL handbook 或相关书籍。

附件一、WampServer 安装

1.安装软件

建议使用WampServer, 这个集成环境对内含的组件的配置做了比较大的优化。

下载地址：

http://www.wampserver.com/en/

WampServer 中的 phpmyadmin 默认是以无密码方式访问MySQL 的，如果要更改为以密码访

问方式，步骤如下：

a 启 动WampServer

http://www.wampserver.com/en/

b 通过在系统托盘中WampServer 的图标上使用鼠标菜单进入phpmyadmin, 点击“权限”按

钮，添加新用户并为其设置密码(建议也为root 添加密码，或者干脆只为root 添加密码)一

一不建议在平常操作中使用root, 太暴力了 ……

c 关掉网页，关掉WampServer

d 进入<wamp 安装目录>/apps/phpmyadmin3.4.10.1, 修改 config.inc.php

-->把$cfg['Servers'][Si]['auth_type']='config'; 改为$cfg['Servers'][$i][auth_type']='cookie';

-->把$cfg['Servers'][Si]['AllowNoPassword']=true; 改为$cfg['Servers'][$i]['AllowNoPassword']=

false;

-->在<?php ?>中的任意位置添加$cfg['blowfish_secret']='<任意字符串>;

5 经过以上四步即可把从 phpmyadmin 登 录 MySQL 的方式改为密码验证，重新启动

WampServer 即可

可能遇到的问题如下：

a.修改phpmyadmin 的配置之后出现无法打开phpmyadmin 页面

-->删除浏览器历史记录(特别是IE8及以下的版本。 一般建议，既然用web 的话，那就换其

它浏览器吧，FireFox,chrome,opera 等都很好)

-->删除<wamp 安装目录>/tmp 下的所有文件，重新启动WampServer

b、从一开始就无法打开phpmyadmin 页面，提示permission denied 之类的信息

-->win7 下可能会有此问题，解决方法是修改<wamp 安装目录>/alias/phpmyadmin.conf,

把

Deny from all

Allow from 127.0.0.1

改为

Allow from all

3.4.10.1
127.0.0.1

附件二、SQLhandbook

CONTENTS
p 2-3 Introduction -PLEASE READ
4 Logging in and out
5-6 Editing SQL statements
6 SAVE commands
7 Running files.The SPOOL command

 SELECT data
9 Creating the tables you need
10 The Data for the examples
11-16 The Basic SELECT statement
17-18 Exercise 1
19 JOINing tables
20 Joining a table to itself
21-22 Outer Joins
23 Exercise 2
23-7 SQL functions
28-33 Group Functions
34 Exercise 3
35-7 Date Functions
38 Exercise 4
39-40 GROUP BY
41-42 The HAVING clause
43 Exercise 5
44-49 Subqueries
50 Exercise 6
51-65 Adding,Updating and Deleting data,data types and views
66 Exercise 7
67-71 Set Operators and Logical Operators

This book has been designed to help you learn SQL as it has

to be learnt by doing,not by teaching.

It is therefore in your best interest to work your way

through it (10-15 hours work)systematically.

You may be asked to submit some of the answers to the

exercises,for an assignment and may be asked specific

details in an exam.

SQL (Structured Query Language)is a relational database language.Amongst other
things the language consists of statements to insert,update,query and protect data.
Although SQL is not a DBMS,for simplicity in this manual SQL will be considered
as a DBMS as well as a language.Of course,in the places where it is necessary,a
distinction will be drawn.

There are a few things to note about SQL as a database language,because it is a
relational database language,SQL may be grouped with the non-procedural database
languages.By non-procedural it is meant that users(with the help of the various
statements)have only to specify which data they want and not how this data must be
found.C++,Java and VB are examples of Procedural languages.It also means that
there are no variables,IF statements or loop constructs.Because it is non
procedural,it is very difficult to teach,and the only way to learn it is by working
through this book and picking up how certain results can be achieved.

SQL can be used in two ways.First,interpretively:an SQL statement is entered at a
terminal or PC and immediately processed or interpreted.The result is also visible
immediately.This is known as interactive SQL.The second way is known as
embedded SQL.The SQL statements are embedded in a program written in another,
procedural language.Results of these statements are not immediately visible to the
user,but are processed by the 'enveloping'program.In this module we shall be

assuming the interpretive use of SQL.

SQL has already been implemented by many manufacturers as the database language
for their DBMS.It is not the case,therefore,that SQL is the name of a particular
manufacturer's product available on the market today.However,it is the market
standard and you will find many career opportunities within the general SQL field.
Currently it is number one in the Jobs market.

Some manufacturers are now providing SQL-server machines.These machines can be
connected to a DBMS,and they carry out all the database functions defined in SQL.
Thus SQL is now a data interchange language between any systems that can 'speak
SQL.Typically,an SQL-server is placed on a LAN where it processes all database
operations for clients on the LAN.

Please note that,although SQL is an ISO standard,each manufacturer have their own
add-ons.

SELECTING DATA FROM TABLES.

The SELECT Command is the basis of all queries on tables,therefore its full
description is given to show its power.Examples of the various formats are provided
after the description.

SELECT
column_ 1,column_2,..

FROM
table_1

[INNER|LEFT |RIGHT]JOIN table_2 ON conditions
WHERE

conditions
GROUP BY column_ 1
HAVING group_conditions
ORDER BY column_1
LIMIT offset,length;

The SELECT statement consists of several clauses as explained in the following list:
SELECT followed by a list of comma-separated columns or an asterisk(*)to
indicate that you want to return all columns.

FROM specifies the table or view where you want to query the data.

JOIN gets related data from other tables based on specific join conditions.

· WHERE clause filters row in the result set.

GROUP BY clause groups a set of rows into groups and applies aggregate
functions on each group.

HAVING clause filters group based on groups defined by GROUP BY clause.

ORDER BYclause specifies a list of columns for sorting.

· LIMIT constrains the number of returned rows.

TheSELECT and FROM clauses are required in the statement.

Description: Selects rows and columns from one or more tables.May be used as a
command,or(with certain restrictions on Clauses)as a subquery in another SELECT,
and UPDATE, or other SQL command.

Don't worry too much about this generic syntax list as you will see all kinds of
examples throughout this book.

·

·

·

·

·

·

PARAMETERSAND CLAUSES.

ALL makes SELECT display all rows produced by the query.Since
this is the default,it is generally not needed

DISTINCT makes it omit duplicate rows.

* makes SELECT display all columns of the table(s)specified by
FROM,in the order they were defined when the table(s)were created.

i.e.SELECT*FROM EMP;

Alternatively,each expression becomes one column in the display.

i.e.SELECT EMPNO,ENAME FROM EMP;
displays only the named columns in the expression.

Each alias,if specified,is used to label the preceding expression in the displayed
table.

e.g.SELECT ENAME“Name”,SAL“Salary”from EMP;

Note the use of double quotes here.character strings are delimited by single
quotes.

FROM table specifies the table or view to be drawn on.More than one table
implies a join. Alias, if specified,may be used as an alias for the preceding table
through the rest of the SELECT command.

SELECTED EXAMPLES AND WORKSHEETS.

The examples in this book should be worked through carefully to ensure that you
understand what the commands are doing. Your assignment work will
assume that knowledge.

You will need the following tables,EMP and DEPT.

These can be created with the following commands:

EPT;

The data in them is currently as shown on the next page:

Note -if the table contents become corrupted (particularly after the Update
example in Exercise 7),you can always delete the tables and start again.This
can be achieved by:

DROP TABLE EMP;
DROP TABLE DEPT;

To list all the tables in your Oracle area:
SHOW TABLES;

THE DATA USED IN THESE EXERCISES:

EMPNO ENAME JOB MGR HIREDATE SAL COMM
DEPTNO

7369 SMITH CLERK 7902 17-DEC-9013750 20
7499 ALLEN SALESMAN 7698 20-FEB-89 19000

6400 30

7521 WARD SALESMAN 7698 22-FEB-93 18500

4250 30

7566 JONES MANAGER 7839 02-APR-89
26850 20

7654 MARTIN SALESMAN 7698 28-SEP-97
15675 3500 30

7698 BLAKE MANAGER 7839 01-MAY-90 24000

30

7782 CLARK MANAGER 7839 09-JUN-88 27500

10

7788 SCOTT ANALYST 7566 19-APR-87 19500

20

7839 KING PRESIDENT 17-NOV-83
82500 10

7844 TURNER SALESMAN 7698 08-SEP-92 18500

6250 30

7876 ADAMS CLERK 77 88 23-MAY-96
11900 20

7900 JAMES CLERK 7698 03-DEC-95
12500 30

7902 FORD ANALYST 7566 03-DEC-91
21500 20

7934 MILLER CLERK 7782 23-JAN-95
13250 10

3258 GREEN SALESMAN 4422 24-JUL-95 18500 2750 50

4422 STEVENS MANAGER 7839 14-JAN-94 24750 50

6548 BARNES CLERK 4422 16-JAN-95 11950 50

DEPTNO DNAME LOC

10 ACCOUNTING LONDON
20 RESEARCH PRESTON
30 SALES LIVERPO0L
40 OPERATIONS STAFFORD
50 MARKETING LUTON

THE SELECT STATEMENT

The SELECT statement is the workhorse of query processing the basic statement
is:-

SELECT COLUMN(S)FROM TABLENAME;
This is the minimum amount of detail which must be entered for a SELECT
statement to work.

Try the following examples:-

SELECT*FROM emp;

Provides a listing of all the data (all columns)in the EMP table.

SELECT ename FROM emp;

Gives a list of all the employee names found in the emp table.

SELECT dname,loc FROM dept;

gives department names and locations.

SELECT job FROM emp; (with duplicates)

Lists all the jobs in the emp table even if they appear more than once.

SELECT DISTINCT job FROM emp; (without duplicates)

List all the jobs in the EMP table eliminating duplicates.

SELECT job,deptno FROM emp; (with duplicates)

Lists the combination of jobs and departments for every row of the emp table.

SELECT DISTINCT job,deptno FROM emp; (without duplicates)

List all the combinations of job and department in the EMP table eliminating
duplicates.

THE WHERE CLAUSE

A WHERE clause causes a 'search'to be made and only those rows that meet
the search condition are retrieved.
A WHERE clause condition can use any ofthe following comparison operators:-

= equal to

SELECT*FROM emp
WHERE ename='JONES';

(Again note that the data is case sensitive,this would not find Jones)

!=not equal to

^=not equal to

<>not equal to

SELECT*FROM emp
WHERE ename !='FORD';

> greater than

SELECT*FROM emp
WHERE sal>15000;

>=greater than or equal to

SELECT*FROM emp
WHERE sal>=12000;

< less than

SELECT*FROM emp
WHERE sal<15000;

<=less than or equal to

SELECT*FROM emp
WHERE sal<=12000;

or special SQLoperators

BETWEEN lowAND high (values are inclusive)

SELECT*FROM emp
WHERE sal BETWEEN 10000 AND 15000;

IN(VALUE1,VALUE2,VALUE3....) character strings must be
enclosed in quotes

SELECT*FROM emp
WHERE job IN('CLERK','ANALYST);

Selects all employees who are

Clerks or analysts

LIKE 'string picture' use '%'and _'as wildcards within
a string picture.Each_acts for

one character.

SELECT*FROM emp
WHERE ename LIKE'%A%';%is for any number of characters

Selects all employees with an‘A'

in their name.

IS NULL IS may only be used with NULL's
(this means the variable has no value)

and also NOT any of the above expressions (used for negation purposes).

Try the following:-

SELECT ename,empno,deptno
FROM emp
WHERE job='CLERK';

List the names,numbers and departments of all the Clerks.

SELECT ename,sal,comm FROM emp

WHERE comm>sal;

Find the employees whose commission is greater than their salary.

SELECT ename,job,sal FROM emp
WHERE sal BETWEEN 12000 AND 14000;

Finds all employees who earn between 12,000 and 14,000

Selecting rows within a range,the WHERE clause can have a low-value and a
high-value associated with it,these values represent the bottom and top of the
required range.

NOT BETWEEN means that only rows that are outside the range will be
selected.

SELECT ename FROM emp
WHERE job IN('CLERK','ANALYST','SALESMAN);

Finds the employees who are clerks,analysts or salesmen.
NOT IN would list those employees whose jobs are not in the list.

SELECT ename FROM emp

WHERE job NOT IN('CLERK','ANALYST','SALESMAN');

SELECT ename,deptno FROM emp
WHERE ename='FORD';

Finds the departments that employees called Fordwork in.

SELECT ename,deptno FROM emp
WHERE ename LIKE' A%';

Finds employee names that have an A as the 3rd letter i.e.Blake,Clark etc.
(Note -there are 2 underscores before the A)

SELECT ename FROM emp
WHERE comm IS NULL;

Finds all employees that do not have any commission

Multiple search conditions may be used in a select statement,linked by either AND
(both statements must be true for a row to be selected)or OR (only one condition

must be true for a row to be selected) AND and OR may be combined to
produce complex search conditions and for clarity and reliability should be
parenthesised to force precedence.Otherwise normal computing rules apply.

SELECT*FROM emp
WHERE job='MANAGER'
OR job='CLERK'
AND deptno=10;

Find everyone whose job title is manager,and all the clerks in department 10

SELECT*FROM emp
WHEREjob='MANAGER'
OR(job='CLERK'
AND deptno=10); (use of parentheses to clarify.)

SELECT*FROM emp
WHERE (job='MANAGER'
OR job='CLERK')
AND deptno=10;

Find all the managers or clerks in department 10.

Any group of search conditions can be negated by enclosing the statement in
parentheses and preceding them with NOT.

SELECT*FROM emp
WHERE NOT (job='MANAGER'
ORjob='CLERK')
AND deptno=10;

Find anyone who is neither a manager nor a clerk but is in department 10.

THE ORDER BY CLAUSE

By default Oracle will display rows of data in a totally unordered way.The ORDER
BY clause should be used to impose an ordering of the rows retrieved by a query and
should always be placed last in the query(or query block).

The use of ORDER BY causes data to be sorted (by default)as follows:-

NUMERICS ascending order by value

DATES chronological order

CHAR alphabetically

The keyword DESC causes the sort to be reversed.
NULL values in a sorted column will always be sorted high,i.e.they will be first
when values are sorted in descending order and last when sorted in ascending order.

SELECTempno,ename,hiredate FROM emp
ORDER BY hiredate;

Shows details of employees with earliest hiredates first.

SELECT job,sal,ename FROM emp
ORDER BYjob,sal DESC;

To order all employees by job,and within job,put them in descending salary
order;

SELECT ename,job,sal,comm,deptno FROM emp
ORDER BY3;

Lists employees in salary order (salary is the 3rd item in the SELECT list)

EXERCISES.1 SIMPLE COMMANDS

1 List all information about the employees.

2 List all information about the departments

3 List only the following information from the EMP table(Employee
name,employee number,salary,department number)

4 List details of employees in departments 10 and 30.

5 List all the jobs in the EMP table eliminating duplicates.

6.What are the names of the employees who earn less than f20,000?

7.What is the name,job title and employee number ofthe person in
department 20 who earns more than f25000?

8.Find all employees whose job is either Clerk or Salesman.

9.Find any Clerk who is not in department 10.

10.Find everyone whose job is Salesman and all the Analysts in
department 20.

11.Find all the employees who earn between f15,000 and f20,000.

Show the employee name,department and salary.

12 Find the name of the President.

13 Find all the employees whose last names end with S

14 List the employees whose names have TH or LL in them

15 List only those employees who receive commission.

16 Find the name,job,salary,hiredate,and department number of all
employees by alphabetical order of name.

17.Find the name,job,salary,hiredate and department number of all
employees in ascending order by their salaries.

18.List all salesmen in descending order by commission divided by their

salary.

19.Order employees in department 30 who receive commision,in
ascending order by commission

20 Find the names,jobs,salaries and commissions ofall employees who
do not have managers.

21 Find all the salesmen in department 30 who have a salary greater than
or equal to f18000.

JOINING TABLES

It is necessary to join two or more tables for some queries.This takes place by
establishing a relationship (usually equality)between a column(domain)present in
two tables known as a foreign key.Simple joins are usually called equi-joins. A join
is automatically performed when a reference is made to more than one table in the
FROM clause

SELECT ename,sal,loc FROM emp,dept
WHERE ename='ALLEN' (search condition)
AND emp.deptno=dept.deptno; ((join condition)

Find Allen's name and salary from the EMP table and location of Allen's
department from the DEPT table.

N.B.because we are now referencing two tables which each have a column with the
same name (deptno),we must always qualify deptno with its table name in order to
prevent confusion,this qualification must be used whenever ambiguous column
names are used within an SQL statement.

SELECT ename,dname FROM emp,dept
WHERE emp.deptno =dept.deptno
ORDER BY ename;

List the name and department of all employees in name order.(Thisjoins
the two tables over DEPTNO and projects out ENAME and DNAME)

Abbreviating Table Names.

Table names can be abbreviated in order to simplify what is typed in with the query.
In this example E and D are abbreviated names for emp and dept.

List the department name and all employee data for employees that work in
Chicago;

SELECT dname,E.*FROM emp E,dept D
WHERE E.deptno=D.deptno AND loc='LUTON'

ORDER BY E.deptno;

Note-if we didn't have ORDER BY E.deptno,but had ORDER BY deptno
We would get a syntax error because it would know whether to sort on the
deptno in Emp or Dept.

Joining a Table to Itself

A table label can be used for more than just abbreviating a table name in a query.It
also allows a join of a table to itself as though it were two separate tables.This can
be very useful because a single SELECT will only go through a table once.By
having two copies of the same table,you can find a specific record in the first copy
and then search the second copy for comparisons.

SELECT WORKER.ename,WORKER.sal
FROM emp WORKER,emp MANAGER
WHERE WORKER.mgr=MANAGER.empno
AND WORKER.sal>MANAGER.sal;

In the query the emp table is treated as if it were two separate tables named
WORKER and MANAGER.

First all the WORKERS are joined to their MANAGERS using the WORKER's
manager's employee number(WORKER.mgr) and the MANAGER's employee
number(MANAGER.empno).

The WHERE clause eliminates all WORKER MANAGER pairs except those
where the WORKER earns more than the manager
(WORKER.SAL >MANAGER.SAL).

Find all employees that earn more than Jones.

SELECT X.ename,X.sal,X.job,Yjob,Y.ename,Y.sal
FROM emp X,emp Y

WHERE X.sal>Y.sal
AND Yename='JONES';

i.e.find JONES,and then go through the table again comparing.

Selecting all possible combinations of rowS.

If the WHERE clause contains no join condition,then all possible combinations of
rows from tables listed in the from clause are displayed.The result (Cartesian product)
is normally not desired so a join condition is usually specified.
This is a common error,and to be avoided because if table A has 20 rows and table B
has 30 rows then not using a join would result in 600 output lines.

Join the Allen row from the EMP table with all the rows in the Dept table

SELECT ename,loc FROM emp,dept

WHERE ename ='ALLEN';

OUTER JOINS

When processing joins between emp and dept you will notice that details of
department 40 never appear in the output.This is because department 40 has no
corresponding rows in the emp table and therefore cannot take part in the join.If it is
required to include records which are outside of the relationship between tables an
outer join must be used.

SELECT dept.deptno,dname,ename,sal from dept left outer join emp on
dept.deptno=emp.deptno

The left 【outer】 join effectively adds a dummy row to the emp table for each
department record which has no corresponding employees.The department record is
then joined with this dummy row and appears once in the output,having nulls in any
columns from the emp table.

EXERCISES 2 JOINS

1.Find the name and salary of employees in Luton.

2.Join the DEPT table to the EMP table and show in department number
order.

3.List the names of all salesmen who work in SALES

4.List all departments that do not have any employees.

5 For each employee whose salary exceeds his manager's salary,list the
employee's name and salary and the manager's name and salary.

6.List the employees who have BLAKE as their manager.

SQL FUNCTIONS

SQL*PLUS has a wide range of functions which may be applied to Oracle data.There
are four classes of functions:-

string functions for searching and manipulating strings.
arithmetic functions for performing calculations on numeric values
date functions for reformatting and performing data arithmetic
aggregate functions for calculations on groups ofdata.

Useful string functions

NOTE -when you wish to Select something,but the data is not in a table (as the
examples below),you can use a dummy table name called DUAL.This table is
only recognised by Mysql as a dummy table,and will never appear as an actual
structure.MySQL may ignore the clauses.MySQL does not require FROM
DUALif no tables are referenced.

LOWER(string) converts upper case alphabetic characters to
lower case.Other characters are not affected

SELECT LOWER('MR.SAMUEL HILLHOUSE')
FROM DUAL:

gives mr samuel hillhouse

UPPER(string)
uppercase.

converts lowercase letters in a string to

SELECT UPPER('Mr.Rodgers')FROM DUAL;

SUBSTR(string,startposition,length)shows a part of the string starting at the start
position of the specified length

SELECT SUBSTR('ABCDEF',2,3)FROM dual;
gives BCD

INSTR(string1,string2) finds the start position of one string inside
another string
SELECT INSTR('ABCDEF','DEF)FROM dual;

gives 4
str_to_date (string[,format]) converts the string to a date.A format may

optionally be specified (see later)

LPAD(str,len,padstr)left pads the string with the specified fill
characters to the specified length.

SELECT LPAD('hi',4,'??');
gives '??hi'

RPAD(str,len,padstr) right pads the string with the specified fill
characters to the specified length.

LTRIM(string) Returns the string str with leading space characters removed

SELECT LTRIM(barbar');
WOULD GIVE barbar

RTRIM(string) Returns the string str with trailing space characters removed

TRIM([{BOTH|LEADING|TRAILING}[remstr]FROM]str)
Returns a string after removing all prefixes or suffixes from the

given string.

MySQL TRIMO function
Syntax:

TRIM([[{LEADING|TRAILING|BOTH}]

[remstr]FROM]str

Example: trailing M will be remove

TRIM(TRAILING M FROM 'MADAM)
Result:MADA

Example: leading M will be remove

TRIM (L EADING M FROM MADAM)
Result:ADAM

both leading and trailing
Example: M will be remove

TRIM (BOTH M FROM MADAM)
Result:ADA

both leading and trailing
Example: M will be remove

Result:ADA

position

both leading and trailing
white spaces will be remove

not specified

TRIM(C MADAM⁵)
Result:MADAM

removing character
not specified

IFNULL(expression1,expression2); takes two expressions and if the first
expression is not NULL,it returns the first expression.Otherwise,it returns the
second expression.

e.g.SELECT*,IFNULL(Comm,0)FROM EMP;

position
not specified

TRIM (M FROM MADAM)

Example:

LENGTH(char) length in characters of specified string

Remember --you must put single quotes round all data items which are strings.

EXAMPLES OF STRING FUNCTIONS

SELECT SUBSTR(ename,1,4)FROM emp;

UPPER(dname)

SELECT UPPER('helen campbell')FROM dual;

LOWER(ename)

SELECT LOWER('Mr Donald Briffet')FROM dual;

STR_TO_DATE('12-12-92','%d-%m-%Y')

SELECT STR_TO_DATE('12-06-1996','%d-%m-%Y')FROM
dual;

LPAD(ename,10,’’)

SELECT LPAD(ename,10,”’)FROM emp;
(pads the name out to 10 chars with spaces before)

RPAD(ename,10,'”)

SELECT RPAD(ename,10,'”)FROM emp;
(as above but with spaces after)

LTRIM(ename,'')

SELECT LTRIM(ename,'')FROM emp;
(removes spaces from before the name)

RTRIM(ename,'')

SELECT RTRIM(ename,'')FROM emp;

IFNULL(comm,0)

SELECT IFNULL(comm,0)FROM emp;

(if an employee has no commission then 0 is displayed)

LENGTH(ename)

SELECT LENGTH('Anderson')FROM dual;

NOTE You can also rename columns within the SQL statement

SELECT ename Employee FROM emp;

will output the present ename values with the heading Employee.Note that if the
new name is a single word then double quotes are not needed.

ARITHMETIC FUNCTIONS

ABS(numeric) absolute value of the number

SELECT ABS(-15)“Absolute”FROM DUAL;

MOD(num1,num2)returns the remainder when numl is divided by num2

SELECT MOD(7,5)“modulo”FROM DUAL;

ROUND(numeric[,d]) rounds the number to d decimal places,the rounding can
occur to either side of the decimal point.

SELECT ROUND(15.193,1)“round”FROM DUAL;

TRUNCATE(numeric[,d]))truncates to d decimal places,

SELECT TRUNCATE(15.79,1)“truncate”FROM DUAL;

CEIL(numeric)rounds the number up to the nearest integer

SELECT CEIL(10.6)FROM dual;

FLO0R(numeric) truncates the number to the nearest integer

SELECT FLOOR(10.6)FROM dual;

SQRT(numeric)returns the square root of the number (returns NULL if the
number is negative)

SELECT SQRT(25)FROM dual;

TO_CHAR(numeric[,format])converts a number to a character string in the
specified format

SELECT TO_CHAR(sysdate(),'DY')FROM dual;

SELECT TO_CHAR(sysdate(),'MONTH')FROM dual;
DATE_FORMAT(date,format) Cut and Paste date_format strings for
MySQL

SELECT DATE_FORMAT(NOw(,'%Y-%m-%d %H:%i:%s')
SELECT DATE_FORMAT(NOw0,'%m')

Some more examples

SIGN(sal -comm)

SELECT SIGN(sal-4*comm)FROM emp;

ABS(sal-comm)

SELECT ABS(sal-4*comm)FROM emp;
ROUND(sal,2)

SELECT ROUND(1234.5678,2)FROM dual;

TRUNCATE(comm,3)

SELECT TRUNCATE(comm,3)FROM emp;

GREATEST(sal,comm)

SELECT GREATEST(sal,comm)FROM emp;

DATE_FORMAT(date,format) Cut and Paste date_format strings for
MySQL

SELECT DATE_FORMAT(NOw(,'%Y-%m-%d %H:%i:%s')

IT IS VERY IMPORTANT TO NOTE THAT IF ANY VARIABLE CONTAINS A
NULL VALUE THEN ANY SQL STATEMENT INVOLVING ARITHMETIC
WILLIGNORE IT
E.G.
SELECTABS(SAL-COMM)FROM EMP;
will only produce results for employees who have a non-null commission (or
salary)

AGGREGATE OR GROUPING FUNCTIONS

AVG AVG([DISTINCT]Column)

This function returns the average of the values in the argument.
The data type of the argument must be numeric,date/time or

character.The data type of the result is the same as the input
argument.

DISTINCT eliminates duplicates.

e.g.Find the total salary budget for each department,the average
salary,the number of people in each department.

SELECT emp.deptno,dname,SUM(sal),
AVG(sal),COUNT(empno)

FROM emp,dept
WHERE emp.deptno =dept.deptno
GROUP BY emp.deptno,dname;

SELECT AVG(sal)“average”FROM emp;

COUNT COUNT(*)
(DISTINCT expression)

This function returns a count of items.
COUNT(*)always returns the number of rows in the table,rows

that contain null values are included.
COUNT(column-name) returns the number of column values.
COUNT(DISTINCT column-name)filters out duplicate column

values.

e.g.How many employees are in each department of the EMP table?

SELECT COUNT(*)FROM emp

GROUPBY deptno;

SELECT COUNT(DISTINCTjob)"Jobs"FROM emp;

NOTE -the“”round Jobs is superfluous here,but must be used if the column heading
is more than one word.

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容

。如要下载或阅读全文，请访问：https://d.book118.com/007

145011132006141

https://d.book118.com/007145011132006141
https://d.book118.com/007145011132006141

