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Op t im i z i n g  a  F l ywhe e l  P r o f i l e

Introduction

The radial stress component in an axially symmetric and homogeneous flywheel of 
constant thicknes hibits a sharp peak near the inner radius. From there, it decreases 
monotonously until it reaches zero at the flywheel’s outer rim; see Figure 1. The 
uneven stress distribution—apparent also for the azimuthal component—reveals a 
design that does not make optimal use of the material available.

Figure 1: Radial (blue) and azimuthal (red) stress components in a homogeneous flywheel 
of constant thickness.

This model solves the problem of finding the thickness profile that results in a radial 
stress distribution that is as even as possible for given values of the flywheel’s mass and 
moment of inertia. The model was inspired by Ref. 1.

Model Definition

Before describing the optimization problem, this section derives the dynamical 
equations, which you implement using a General Form PDE interface in 1D.
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S T R E S S E S  I N  A  R O T A T I N G  F L Y W H E E L

In a rotating flywheel, stresses due to the flywheel’s weight are typically very small 
compared to dynamically induced stresses; therefore this model neglects gravitational 
stres pressed in terms of U ≡ u/r, where u is the local radial displacement (m) and 
r is the radial coordinate, the stress components along the radial and azimuthal 
directions in a rotationally symmetric disk made of a homogeneous, isotropic, and 
elastic material with Young’s modulus E (N/m2) and Poisson’s ratio ν read:

 (1)

Inserting these expressions in the equation of motion for an infinitesimal mass 
element, results in the second-order ordinary differential equation (ODE)

 (2)

valid for a centrally bored flywheel with inner radius r0 (m) and outer radius r1 (m) 
rotating with the angular velocity ω (rad/s). In this equation, the flywheel’s thickness, 
H, which can be a function of r, enters through the dimensionless function

At the inner radius the displacement is zero and at the outer radius the radial stress 
component vanishes, which corresponds to the following boundary conditions:

 (3)

Given the function Φ, Equation 2 combined with Equation 3 forms a well-posed ODE 
problem. With the solution U = U(r) at hand, you can determine the stress 
components through the Equation 1.

T H E  O P T I M I Z A T I O N  P R O B L E M

For the special case of constant flywheel thickness, H(r) = H0, the function Φ is 
identically zero. As Figure 1 shows and you verify later, this shape results in an uneven 
stress distribution, with a um for σr at r = r0.
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This model concerns optimizing the flywheel’s profile to obtain a radial stress 
distribution that is as even as possible under the design requirements of specified 
flywheel mass and moment of inertia. To formulate the task in mathematical terms, 
tentatively introduce the objective function

 (4)

where σr,mean denotes the average radial stress value along the flywheel’s radial 
extension, and σ0 is a normalization constant. The latter is introduced to make the 
integrand dimensionless and its value is chosen to be roughly an order of magnitude 
smaller than σr to give Qstress a suitable magnitude. The optimization problem is then 
to find the shape H = H( r ) that minimizes Qstress under the additional constraints

and

where m0 and I0 are the desired mass and moment of inertia, respectively.

However, Equation 4 alone does not give a reasonable result; suppressing profiles 
where dH/dr is not smooth requires a second term in the objective function:

Here A is a normalization constant to be chosen such that Qsmoothness and Qstress are 
comparable in magnitude; as long as this condition is satisfied, the model is fairly 
insensitive to the value of A.
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M O D E L  D A T A

Table 1 gives the input data for the model. As the initial design, take a flywheel of 
constant thickness H0. The material properties correspond to those of steel.

TABLE 1:  MODEL DATA

PROPERTY VALUE DESCRIPTION

 r0 0.01 m Inner flywheel radius

 r1 0.60 m Outer flywheel radius

 H0 0.03 m Initial flywheel thickness

 E 2.1·1011 N/m2 Young’s modulus

 ν 0.3 Poisson’s parameter

 ρ 7800 kg/m3 Density

 ω 2π·50 rad/s Angular velocity

 σ0 107 Pa Normalization constant, stress term

 A 1 Normalization constant, smoothness term
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Results and Discussion

Figure 2 shows the optimized flywheel profile (black lines) with that of the original flat 
flywheel of the same mass and moment of inertia included for comparison (green 
lines).

Figure 2: Optimized thickness profile.

Figure 3 displays the radial and azimuthal stress components for both the initial and 
the optimized flywheel profiles. In the optimized flywheel, the stress components are 
almost equal and nearly constant for most of the radial cross-section. The al 
stress, which occurs in the radial direction at the inner radius, is roughly 102 MPa for 



以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/00801300702

3006120

https://d.book118.com/008013007023006120
https://d.book118.com/008013007023006120

