
 2803x C/C++ Header Files and Peripheral Examples Quick Start

 Version 1.21

December 1, 2009

1

2803x C/C++ Header Files and Peripheral Examples
Quick Start

1 Device Support:.. 2
2 Introduction: ... 2

2.1 Revision History.. 3
2.2 Where Files are Located (Directory Structure) .. 3

3 Understanding The Peripheral Bit-Field Structure Approach ... 6
4 Peripheral Example Projects ... 7

4.1 Getting Started ... 7
4.1.1 Getting Started in Code Composer Studio v3.x ... 7
4.1.2 Getting Started in Code Composer Studio v4.. 12

4.2 Example Program Structure.. 18
4.2.1 Source Code ... 19
4.2.2 Linker Command Files .. 19

4.3 Example Program Flow... 21
4.4 Included Examples: .. 22
4.5 Executing the Examples From Flash... 24

5 Steps for Incorporating the Header Files and Sample Code ... 28
5.1 Before you begin... 28
5.2 Including the DSP2803x Peripheral Header Files ... 28
5.3 Including Common Example Code.. 33

6 Troubleshooting Tips & Frequently Asked Questions... 37
6.1 Effects of read-modify-write instructions. .. 39

6.1.1 Registers with multiple flag bits in which writing a 1 clears that flag........................... 40
6.1.2 Registers with Volatile Bits. ... 40

7 Migration Tips for moving from the TMS320x280x header files to the TMS320x2803x
header files ... 41

8 Packet Contents: .. 42
8.1 Header File Support – DSP2803x_headers .. 42

8.1.1 DSP2803x Header Files – Main Files.. 42
8.1.2 DSP2803x Header Files – Peripheral Bit-Field and Register Structure Definition

Files .. 43
8.1.3 Code Composer .gel Files... 44
8.1.4 Variable Names and Data Sections... 44

8.2 Common Example Code – DSP2803x_common... 46
8.2.1 Peripheral Interrupt Expansion (PIE) Block Support .. 46
8.2.2 Peripheral Specific Files.. 47
8.2.3 Utility Function Source Files.. 48
8.2.4 Example Linker .cmd files ... 48
8.2.5 Example Library .lib Files .. 49

9 Detailed Revision History: ... 50

 V1.20 Quick Start Readme

2

1 Device Support:

This software package supports 2803x devices. This includes the following: TMS320F28035,
TMS320F28034, TMS320F28033, TMS320F28032, TMS320F28031, and TMS320F28030.

Throughout this , TMS320F28035, TMS320F28034, TMS320F28033,
TMS320F28032, TMS320F28031, and TMS320F28030 are abbreviated as F28035, F28034,
F28033, F28032, F28031, and F28030 respectively.

2 Introduction:

The 2803x C/C++ peripheral header files and example projects facilitate writing in C/C++
Code for the Texas Instruments TMS320x2803x devices. The code can be used as a learning
tool or as the basis for a development tform depending on the current needs of the user.

• Learning Tool:

This download includes several example Code Composer Studio™† projects for a ‘2803x
development tform.

These examples demonstrate the steps required to initialize the device and utilize the on-
chip peripherals. The provided examples can be copied and modified giving the user a

tform to quickly experiment with different peripheral configurations.

These projects c so be migrated to other devices by simply changing the memory
allocation in the linker command file.

• Development tform:

The peripheral header files can easily be incorporated into a new or existing project to
provide a tform for accessing the on-chip peripherals using C or C++ code. In
addition, the user can pick and choose functions from the provided code samples as
needed and discard the rest.

To get started this provides the following information:

• Overview of the bit-field structure approach used in the 2803x C/C++ peripheral header
files.

• Overview of the included peripheral example projects.

• Steps for integrating the peripheral header files into a new or existing project.

• Troubleshooting tips and frequently asked questions.

• Migration tips for users moving from the 280x header files to the 2803x header files.

†
 Code Composer Studio is a of Texas Instruments ().

V1.20 Quick Start Readme

 3

Finally, this does not provide a tutorial on writing C code, using Code Composer
Studio, or the C28x Compiler and Assembler. It is assumed that the reader already has a
2803x hardware tform setup and connected to a host with Code Composer Studio
installed. The user should have a basic understanding of how to use Code Composer Studio
to download code through JTAG and perform basic debug operations.

2.1 Revision History

Version 1.21

� This version includes minor fixes to a couple of the files. A detailed revision history
can be found in Section 9.

Version 1.20

� This version includes minor corrections and comment fixes to the header files and
examples. A detailed revision history can be found in Section 9.

Version 1.10

� This version includes minor corrections and comment fixes to the header files and
examples, and also adds a separate example folder, DSP2803x_examples_ccsv4,
with examples supported by the Eclipse-based Code Composer Studio v4. A detailed
revision history can be found in Section 9.

Version 1.01

� This version includes minor corrections to comments in the common files, and adds
additional LIN and ADC temperature sensor examples. A detailed revision history can
be found in Section 9.

Version 1.00

� This version is the first release of the 2803x header files and examples. It is an
internal release used for customer trainings and tools releases.

2.2 Where Files are Located (Directory Structure)

As installed, the 2803x C/C++ Header Files and
Peripheral Examples is partitioned into a well-defined
directory structure.

Table 1 describes the contents of the main directories
used by DSP2803x header files and peripheral
examples:

 V1.20 Quick Start Readme

4

V1.20 Quick Start Readme

 5

Table 1. DSP2803x Main Directory Structure

Directory Description

<base> Base install directory

<base>\doc ation including the revision history from the previous release.

<base>\DSP2803x_headers Files required to incorporate the peripheral header files into a project .
The header files use the bit-field structure approach described in Section
3.
Integrating the header files into a new or existing project is described in
Section 5.

<base>\DSP2803x_example ample Code Composer Studio projects compiled with floating point unit
enabled. These example projects illustrate how to configure many of the
on-chip peripherals. An overview of the examples is given in Section 4.

<base>\DSP2803x_examples_ccsv4 Example Code Composer Studio v4 projects compiled with floating point
unit enabled. These examples are identical to those in the
\DSP2803x_examples directory, but are generated for CCSv4 and cannot
be run in CCSv3.x. An overview of the examples is given in Section 4.

<base>DSP2803x_common Common source files shared acros ample projects to illustrate how to
perform tasks using header file approach. Use of these files is optional,
but may be useful in new projects. A list of these files is in Section 8.

Under the DSP2803x_headers and DSP2803x_common directories the source files are
further broken down into sub-directories each indicating the type of file. Table 2 lists the sub-
directories and describes the types of files found within each:

Table 2. DSP2803x Sub-Directory Structure

Sub-Directory Description

DSP2803x_headers\cmd Linker command files that allocate the bit-field structures described in Section 3.

DSP2803x_headers\source Source files required to incorporate the header files into a new or existing
project.

DSP2803x_headers\include Header files for each of the on-chip peripherals.

DSP2803x_common\cmd Example memory command files that allocate memory on the devices.

DSP2803x_common\include Common .h files that are used by the peripheral examples.

DSP2803x_common\source Common .c files that are used by the peripheral examples.

DSP2803x_common\lib Common library (.lib) files that are used by the peripheral examples.

DSP2803x_common\gel Code Composer Studio v3.x GEL files for each device. These are optional.

DSP2803x_common\gel\ccsv4 Code Composer Studio v4.x GEL files for each device. These are optional.

 V1.20 Quick Start Readme

6

3 Understanding The Peripheral Bit-Field Structure Approach

The following application note includes useful information regarding the bit-field peripheral
structure approach used by the header files and examples.

This method is compared to traditional #define macros and topics of code efficiency and
special case registers are also addressed. The information in this application note is
important to understand the impact using bit fields can have on your application code.

Programming TMS320x28xx and 28xxx Peripherals in C/C++ (SPRAA85)

V1.20 Quick Start Readme

 7

4 Peripheral Example Projects

This section describes how to get started with and configure the peripheral examples
included in the 2803x Header Files and Peripheral Examples software package.

4.1 Getting Started

4.1.1 Getting Started in Code Composer Studio v3.x

To get started, follow these steps to load the 32-bit CPU-Timer example. Other examples are
set-up in a similar manner.

1. Have a hardware tform connected to a host with Code Composer Studio
installed.

 NOTE: As d, the ‘2803x example projects are built for the ‘28035 device. If you
are using another 2803x device, the memory definition in the linker command file
(.cmd) will need to be changed and the project rebuilt.

2. Load the example’s GEL file (.gel) or Project file (.pjt).

Each example includes a Code Composer Studio GEL file to help automa oading of
the project, compiling of the code and populating of the watch window. Alternatively, the
project file itself (.pjt) can be loaded instead of using the included GEL file.

To load the ‘2803x CPU-Timer example’s GEL file follow these steps:

a. In Code Composer Studio: File->Load GEL

b. Browse to the CPU Timer example directory: DSP2803x_examples\cpu_timer

c. Select Example_2803xCpuTimer.gel and click on open.

d. From the Code Composer GEL pull-down select

DSP2803x CpuTimerExample-> Load_and_Build_Project

This will load the project and build compile the project.

 V1.20 Quick Start Readme

8

3. Edit DSP28_Device.h

Edit the DSP2803x_Device.h file and make sure the appropriate device is selected. By
default the 28035 is selected.

/**

* DSP2803x_headers\include\DSP2803x_Device.h

**/

#define TARGET 1

//---

// User To Select Target Device:

#define DSP28_28030PAG 0

#define DSP28_28030PN 0

#define DSP28_28031PAG 0

#define DSP28_28031PN 0

#define DSP28_28032PAG 0

#define DSP28_28032PN 0

#define DSP28_28033PAG 0

#define DSP28_28033PN 0

#define DSP28_28034PAG 0

#define DSP28_28034PN 0

#define DSP28_28035PAG 0

#define DSP28_28035PN TARGET

4. Edit DSP2803x_Examples.h

Edit DSP2803x_Examples.h and specify the clock rate, the PLL control register value
(PLLCR and DIVSEL). These values will be used by the examples to initialize the
PLLCR regis nd DIVSEL bits.

The default values will result in a 60Mhz SYSCLKOUT frequency.

V1.20 Quick Start Readme

 9

/**

* DSP2803x_common\include\DSP2803x_Examples.h

**/

/*---

 Specify the PLL control register (PLLCR) and divide select (DIVSEL) value.

---*/

//#define DSP28_DIVSEL 0 // Enable /4 for SYSCLKOUT(default at reset)

//#define DSP28_DIVSEL 1 // Disable /4 for SYSCKOUT

#define DSP28_DIVSEL 2 // Enable /2 for SYSCLKOUT

//#define DSP28_DIVSEL 3 // Enable /1 for SYSCLKOUT

 #define DSP28_PLLCR 12

//#define DSP28_PLLCR 11

//#define DSP28_PLLCR 10

//#define DSP28_PLLCR 9

//#define DSP28_PLLCR 8

//#define DSP28_PLLCR 7

//#define DSP28_PLLCR 6

//#define DSP28_PLLCR 5

//#define DSP28_PLLCR 4

//#define DSP28_PLLCR 3

//#define DSP28_PLLCR 2

//#define DSP28_PLLCR 1

//#define DSP28_PLLCR 0 // (Default at reset) PLL is bypassed in this mode

//--

In DSP2803x_Examples.h, also specify the SYSCLKOUT rate. This value is used to
scale a delay loop used by the examples. The default value is for a 60 Mhz
SYSCLKOUT.

/**

* DSP2803x_common\include\DSP2803x_Examples.h

**/

……

#define CPU_RATE 16.667L // for a 60MHz CPU clock speed (SYSCLKOUT)

//#define CPU_RATE 20.000L // for a 50MHz CPU clock speed (SYSCLKOUT)

//#define CPU_RATE 25.000L // for a 40MHz CPU clock speed (SYSCLKOUT)

//#define CPU_RATE 33.333L // for a 30MHz CPU clock speed (SYSCLKOUT)

……

 V1.20 Quick Start Readme

10

5. Review the comments at the top of the main source file:
Example_2803xCpuTimer.c.

A brief description of the example and any assumptions that are made and any external
hardware requirements are listed in the comments at the top of the main source file of
each example. In some cases you may be required to make external connections for the
example to work properly.

6. Perform any hardware setup required by the example.

Perform any hardware setup indicated by the comments in the main source. The CPU-
Timer example only requires that the hardware be setup for “Boot to SARAM” mode.
Other examples may require additional hardware configuration such as connecting pins
together or pulling a pin high or low.

Table 3 shows a listing of the boot mode pin settings for your reference. Table 4 and
Table 5 list the EMU boot modes (when emulator is connected) and the Get Mode boot
mode options (mode is programmed into OTP) respectively. Refer to the ation
for your hardware tform for information on configuring the boot mode pins. For more
information on the ‘2803x boot modes refer to the device specific Boot ROM Reference
Guide.

Table 3. 2803x Boot Mode Settings

GPIO37

TDO

GPIO34

CMP2OUT

TRSTn

Mode

X X 1 EMU Mode

0 0 0 Parallel I/O

0 1 0 SCI

1 0 0 Wait

1 1 0 “Get Mode”

Table 4. 2803x EMU Boot Modes (Emulator Connected)

EMU_KEY

0x0D00

EMU_BMODE

0x0D01

Boot Mode Selected

!= 0x55AA x Wait

0x0000 Parallel I/O

0x0001 SCI

0x0002 Wait

0x0003 Get Mode

0x0004 SPI

0x0005 I2C

0x0006 OTP

0x0007 eCAN

0x0008 Wait

0x000A Boot to RAM

0x000B Boot to FLASH

0x55AA

Other Wait

V1.20 Quick Start Readme

 11

Table 5. 2803x GET Boot Modes (Emulator Disconnected)

OTP_KEY

0x3D7BFE

OTP_BMODE

0x3D7BFF

Boot Mode Selected

!= 0x55AA x Get Mode - Flash

0x0001 Get Mode - SCI

0x0003 Get Mode – Flash

0x0004 Get Mode - SPI

0x0005 Get Mode - I2C

0x0006 Get Mode - OTP

0x0007 Get Mode - eCAN

0x55AA

Other Get Mode - Flash

When the emulator is connected for debugging:

TRSTn = 1, and therefore the device is in EMU boot mode. In this situation, the user must
write the key value of 0x55AA to EMU_KEY at address 0x0D00 and the desired EMU boot
mode value to EMU_BMODE at 0x0D01 via the debugger window according to Table 4. The
2803x gel files in the DSP2803x_common/gel/ directory have a GEL function – EMU Boot
Mode Select -> EMU_BOOT_SARAM() which performs the debugger write to boot to
“SARAM” mode when called.

When the emulator is not connected for debugging:

SCI or Parallel I/O boot mode can be selected directly via the GPIO pins, or OTP_KEY at
address 0x3D7BFE and OTP_BMODE at address 0x3D7BFF can be programmed for the
desired boot mode per Table 5.

7. Load the code

Once any hardware configuration has been completed, from the Code Composer GEL
pull-down select

DSP2803x CpuTimerExample-> Load_Code (for ‘2803x devices)

This will load the .out file into the 28x device, populate the watch window with variables of
interest, reset the part and execute code to the start of the main function. The GEL file is
setup to reload the code every time the device is reset so if this behavior is not desired,
the GEL file can be removed at this time. To remove the GEL file, right click on its name
and select remove.

8. Run the example, add variables to the watch window or exam he memory
contents.

9. Experiment, modify, re-build the example.

If you wish to modify the examples it is suggested that you make a copy of the entire
header file packet to modify or at least create a backup of the original files first. New
examples provided by TI will assume that the base files are as d.

 V1.20 Quick Start Readme

12

Sections 4.2 and 4.3 describe the structure and flow of the examples in more detail.

10. When done, remove the example’s GEL file and project from Code Composer
Studio.

To remove the GEL file, right click on its name and select remove. The examples use the
header files in the DSP2803x_headers directory and shared source in the
DSP2803x_common directory. Only example files specific to a particular example are
located within in the example directory.

Note: Most of the example code included uses the .bit field structures to access
registers. This is d o help the user learn how to use the peripheral and device.
Using the bit fields has the advantage of yielding code that is easier to read and
modify. This method will result in a slight code overhead when compared to using
the .all method. In addition, the example projects have the compiler optimizer
turned off. The user can change the compiler settings to turn on the optimizer if
desired.

4.1.2 Getting Started in Code Composer Studio v4

To get started, follow these steps to load the 32-bit CPU-Timer example. Other examples are
set-up in a similar manner.

1. Have a hardware tform connected to a host with Code Composer Studio
installed.

 NOTE: As d, the ‘2803x example projects are built for the ‘28035 device. If you
are using another 2803x device, the memory definition in the linker command file
(.cmd) will need to be changed and the project rebuilt.

2. Open the example project.

Each example has its own project directory which is “imported”/opened in Code
Composer Studio v4.

To open the ‘2803x CPU-Timer example project directory, follow the following steps:

a. In Code Composer Studio v 4.x: Project->Import Existing CCS/CCE Eclipse Project.

b. Next to “Select Root Directory”, browse to the CPU Timer example directory:
DSP2803x_examples_ccsv4\cpu_timer. Select the Finish button.

This will import/open the project in the CCStudio v4 C/C++ project
window.

V1.20 Quick Start Readme

 13

3. Edit DSP28_Device.h

Edit the DSP2803x_Device.h file and make sure the appropriate device is selected. By
default the 28035 is selected.

/**

* DSP2803x_headers\include\DSP2803x_Device.h

**/

#define TARGET 1

//---

// User To Select Target Device:

#define DSP28_28030PAG 0

#define DSP28_28030PN 0

#define DSP28_28031PAG 0

#define DSP28_28031PN 0

#define DSP28_28032PAG 0

#define DSP28_28032PN 0

#define DSP28_28033PAG 0

#define DSP28_28033PN 0

#define DSP28_28034PAG 0

#define DSP28_28034PN 0

#define DSP28_28035PAG 0

#define DSP28_28035PN TARGET

4. Edit DSP2803x_Examples.h

Edit DSP2803x_Examples.h and specify the clock rate, the PLL control register value
(PLLCR and DIVSEL). These values will be used by the examples to initialize the
PLLCR regis nd DIVSEL bits.

The default values will result in a 60Mhz SYSCLKOUT frequency.

 V1.20 Quick Start Readme

14

/**

* DSP2803x_common\include\DSP2803x_Examples.h

**/

/*---

 Specify the PLL control register (PLLCR) and divide select (DIVSEL) value.

---*/

//#define DSP28_DIVSEL 0 // Enable /4 for SYSCLKOUT(default at reset)

//#define DSP28_DIVSEL 1 // Disable /4 for SYSCKOUT

#define DSP28_DIVSEL 2 // Enable /2 for SYSCLKOUT

//#define DSP28_DIVSEL 3 // Enable /1 for SYSCLKOUT

 #define DSP28_PLLCR 12

//#define DSP28_PLLCR 11

//#define DSP28_PLLCR 10

//#define DSP28_PLLCR 9

//#define DSP28_PLLCR 8

//#define DSP28_PLLCR 7

//#define DSP28_PLLCR 6

//#define DSP28_PLLCR 5

//#define DSP28_PLLCR 4

//#define DSP28_PLLCR 3

//#define DSP28_PLLCR 2

//#define DSP28_PLLCR 1

//#define DSP28_PLLCR 0 // (Default at reset) PLL is bypassed in this mode

//--

In DSP2803x_Examples.h, also specify the SYSCLKOUT rate. This value is used to
scale a delay loop used by the examples. The default value is for a 60 Mhz
SYSCLKOUT.

/**

* DSP2803x_common\include\DSP2803x_Examples.h

**/

……

#define CPU_RATE 16.667L // for a 60MHz CPU clock speed (SYSCLKOUT)

//#define CPU_RATE 20.000L // for a 50MHz CPU clock speed (SYSCLKOUT)

//#define CPU_RATE 25.000L // for a 40MHz CPU clock speed (SYSCLKOUT)

//#define CPU_RATE 33.333L // for a 30MHz CPU clock speed (SYSCLKOUT)

……

5. Review the comments at the top of the main source file:
Example_2803xCpuTimer.c.

A brief description of the example and any assumptions that are made and any external
hardware requirements are listed in the comments at the top of the main source file of
each example. In some cases you may be required to make external connections for the
example to work properly.

6. Perform any hardware setup required by the example.

Perform any hardware setup indicated by the comments in the main source. The CPU-
Timer example only requires that the hardware be setup for “Boot to SARAM” mode.

V1.20 Quick Start Readme

 15

Other examples may require additional hardware configuration such as connecting pins
together or pulling a pin high or low.

Table 3 shows a listing of the boot mode pin settings for your reference. Table 4 and
Table 5 list the EMU boot modes (when emulator is connected) and the Get Mode boot
mode options (mode is programmed into OTP) respectively. Refer to the ation
for your hardware tform for information on configuring the boot mode pins. For more
information on the ‘2803x boot modes refer to the device specific Boot ROM Reference
Guide.

Table 6. 2803x Boot Mode Settings

GPIO37

TDO

GPIO34

CMP2OUT

TRSTn

Mode

X X 1 EMU Mode

0 0 0 Parallel I/O

0 1 0 SCI

1 0 0 Wait

1 1 0 “Get Mode”

Table 7. 2803x EMU Boot Modes (Emulator Connected)

EMU_KEY

0x0D00

EMU_BMODE

0x0D01

Boot Mode Selected

!= 0x55AA x Wait

0x0000 Parallel I/O

0x0001 SCI

0x0002 Wait

0x0003 Get Mode

0x0004 SPI

0x0005 I2C

0x0006 OTP

0x0007 eCAN

0x0008 Wait

0x000A Boot to RAM

0x000B Boot to FLASH

0x55AA

Other Wait

 V1.20 Quick Start Readme

16

Table 8. 2803x GET Boot Modes (Emulator Disconnected)

OTP_KEY

0x3D7BFE

OTP_BMODE

0x3D7BFF

Boot Mode Selected

!= 0x55AA x Get Mode - Flash

0x0001 Get Mode - SCI

0x0003 Get Mode – Flash

0x0004 Get Mode - SPI

0x0005 Get Mode - I2C

0x0006 Get Mode - OTP

0x0007 Get Mode - eCAN

0x55AA

Other Get Mode - Flash

When the emulator is connected for debugging:

TRSTn = 1, and therefore the device is in EMU boot mode. In this situation, the user must
write the key value of 0x55AA to EMU_KEY at address 0x0D00 and the desired EMU boot
mode value to EMU_BMODE at 0x0D01 via the debugger window according to Table 4. The
2803x gel files in the DSP2803x_common/gel/ directory have a GEL function – EMU Boot
Mode Select -> EMU_BOOT_SARAM() which performs the debugger write to boot to
“SARAM” mode when called.

When the emulator is not connected for debugging:

SCI or Parallel I/O boot mode can be selected directly via the GPIO pins, or OTP_KEY at
address 0x3D7BFE and OTP_BMODE at address 0x3D7BFF can be programmed for the
desired boot mode per Table 5.

7. Build and Load the code

Once any hardware configuration has been completed, in Code Composer Studio v4, go
to Target->Debug Active Project.

This will open the “Debug ” in CCSv4, build the project, load the .out file into
the 28x device, reset the part, and execute code to the start of the main function. By
default, in Code Composer Studio v4, every time Debug Active Project is selected, the
code is automatically built and the .out file loaded into the 28x device.

8. Run the example, add variables to the watch window or exam he memory
contents.

At the top of the code in the comments section, there should be a list of “Watch
variables”. To add these to the watch window, highlight them and right-click. Then
select Add Watch expression. Now variables of interest are added to the watch
window.

V1.20 Quick Start Readme

 17

9. Experiment, modify, re-build the example.

If you wish to modify the examples it is suggested that you make a copy of the entire
header file packet to modify or at least create a backup of the original files first. New
examples provided by TI will assume that the base files are as d.

Sections 4.2 and 4.3 describe the structure and flow of the examples in more detail.

10. When done, delete the project from the Code Composer Studio v4 workspace.

Go to View->C/C++ Projects to open up your project view. To remove/delete the project
from the workspace, right click on the project’s name and select delete. Make sure the Do
not delete contents button is selected, then select Yes. This does not delete the project
itself. It merely removes the project from the workspace until you wish to open/import it
again.

The examples use the header files in the DSP2803x_headers directory and shared
source in the DSP2803x_common directory. Only example files specific to a particular
example are located within in the example directory.

Note: Most of the example code included uses the .bit field structures to access
registers. This is d o help the user learn how to use the peripheral and device.
Using the bit fields has the advantage of yielding code that is easier to read and
modify. This method will result in a slight code overhead when compared to using
the .all method. In addition, the example projects have the compiler optimizer
turned off. The user can change the compiler settings to turn on the optimizer if
desired.

 V1.20 Quick Start Readme

18

4.2 Example Program Structure

Each of the example programs has a very similar structure. This structure includes unique
source code, shared source code, header files and linker command files.

/**

* DSP2803x_examples\cpu_timer\Example_2803xCpuTimer.c

**/

#include "DSP28x_Project.h" // Device Headerfile and Examples Include File

• DSP28x_Project.h

This header file includes DSP2803x_Device.h and DSP2803x_Examples.h. Because the
name is device-generic, example/custom projects can be easily ported between different
device header files. With this file included in the example source files, only the
example/custom project (.pjt) file and DSP28x_Project.h file would need to be modified
when porting source cod ween different devices. This file is found in the
<base>\DSP2803x_common\include directory.

• DSP2803x_Device.h

This header file is required to use the header files. This file includes all of the required
peripheral specific header files and includes device specific macros and typedef
statements. This file is found in the <base>\DSP2803x_headers\include directory.

DSP2802x_GlobalVariableDefs.c
This source file is required to use the header files.

Example Specific Source Code

Common (shared) Source Code
Used by more then one example. These files
contain generic functions for setting up peripherals
to a defined state or functions that may be useful to
re-use in different applications.

Shared Source Code

DSP2802x_Headers_nonBIOS.cmd
Linker file required by the peripheral specific header files.

Memory block specific linker command file

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/00814305612

4006073

https://d.book118.com/008143056124006073
https://d.book118.com/008143056124006073

