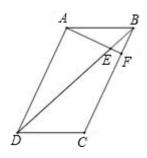
人教版八年级下册第18章《平行四边形》培优提升训练题

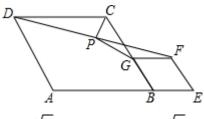
一. 选择题

1. 如图, $\neg ABCD$ 中, $\angle ABC=75^{\circ}$, $AF \bot BC$ 于 F , AF 交 BD 于 E , 若 DE=2AB ,则 $\angle AED$ 的大小 是 (



A. 60°

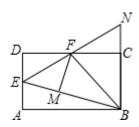
- B. 65°
- C. 70°
- D. 75°
- 2. 如图, 在菱形 ABCD 和菱形 BEFG 中, 点 $A \setminus B \setminus E$ 在同一直线上, P 是线段 DF 的中点, 连接 PG, PC. 若 $\angle ABC = \angle BEF = 60^{\circ}$,则 $\frac{PG}{PC} = ($



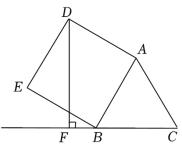
A. $\sqrt{2}$

- B. $\sqrt{3}$
- C. $\frac{\sqrt{2}}{2}$ D. $\frac{\sqrt{3}}{3}$
- 3. 如图, 在矩形 ABCD 中, 点 E 是 AD 的中点, $\angle EBC$ 的平分线交 CD 于点 F, 将 $\triangle DEF$ 沿 EF 折 叠,点D恰好落在 $BE \perp M$ 点处,延长 $BC \setminus EF$ 交于点N.有下列四个结论:
 - (1)DF = CF;
 - ② $BF \perp EN$;
 - $(3) \triangle BEN$ 是等边三角形;
 - $(4)S_{\triangle BEF} = 3S_{\triangle DEF}$.

其中,将正确结论的序号全部选对的是()



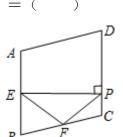
- A. (1)(2)(3)
- B. 124
- C. 234
- D. 1234
- 4. 如图,在边长为 2 的等边三角形 ABC 的外侧作正方形 ABED,过点 D 作 $DF \perp BC$,垂足为 F,则 DF 的长为(



A. $2\sqrt{3}+2$

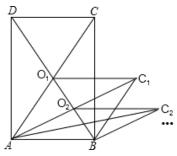
B. $5 - \frac{\sqrt{3}}{3}$ C. $3 - \sqrt{3}$ D. $\sqrt{3} + 1$

5. 如图, 在菱形 ABCD 中, $\angle A=100^\circ$, E, F 分别是边 AB 和 BC 的中点, $EP\bot CD$ 于点 P, 则 $\angle FPC$



A. 35°

- B. 45°
- C. 50°
- D. 55°
- 6. 如图,矩形 ABCD 的面积为 5,它的两条对角线交于点 O_1 ,以 AB、 AO_1 为两邻边作平行四边形 ABC_1O_1 , 平行四边形 ABC_1O_1 的对角线交于点 O_2 , 同样以 $AB \setminus AO_2$ 为两邻边作平行四边形 ABC_2O_2 , …, 依此类推, 则平行四边形 ABC_nO_n 的面积为 (

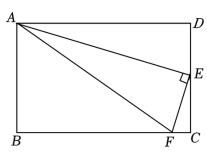


A. $(\frac{1}{2})^n$

B. $5 \times (\frac{1}{2})^{n+1}$

C. $5 \times (\frac{1}{2})^n$

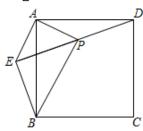
- D. $5 \times (\frac{1}{2})^{n-1}$
- 7. 如图,矩形 ABCD中,点E为 CD 边的中点,连接 AE,过E作 $EF \perp AE$ 交 BC 于点F,连接 AF, 若 $\angle EFC = \alpha$,则 $\angle BAF$ 的度数为(



A. $2\alpha - 90^{\circ}$

- B. $45^{\circ} + \frac{\alpha}{2}$ C. $45^{\circ} \frac{\alpha}{2}$ D. $90^{\circ} \alpha$

8. 如图,正方形 ABCD 外取一点 E,连接 AE、BE、DE. 过点 A 作 AE 的垂线交 DE 于点 P,若 AE= AP=1, $PB=\sqrt{3}$. 下列结论: ① $EB\perp ED$; ②点 B 到直线 DE 的距离为 $\frac{\sqrt{2}}{2}$; ③ $S_{\triangle APD}+S_{\triangle APB}=$ $\frac{\sqrt{2}+1}{2}$; **④** $S_{\text{E} ext{ } \pi \pi ABCD} = 2 + \sqrt{2}$. 其中正确结论的序号是(

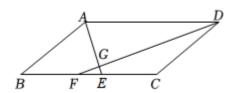


- A. (1)(3)(4)

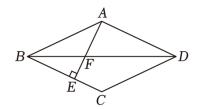
- B. 123 C. 234 D. 1234

二. 填空题

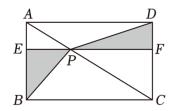
9. 如图, 四边形 *ABCD* 中, *AB* // *CD*, *AD* // *BC*, 且 ∠*BAD*、∠*ADC* 的角平分线 *AE*、*DF* 分别交 *BC* 于点 $E \setminus F$. 若 EF = 2, AB = 5, 则 AD 的长为 _____.



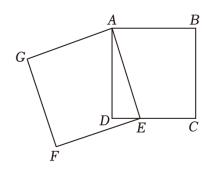
10. 如图,在菱形 ABCD 中, $AE \perp BC$ 于点 E,交 BD 于点 F,若 E 为 BC 的中点,且 AB=4,则 AF的长等于

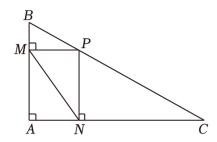


11. 如图, 点 P 是矩形 ABCD 的对角线 AC 上一点, 过点 P 作 $EF/\!\!/BC$, 分别交 AB, CD 于点 $E \setminus F$, 连接 PB、PD, 若 AE=2, PF=9, 则图中阴影面积为 _____.

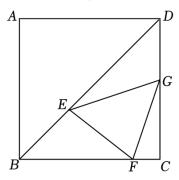


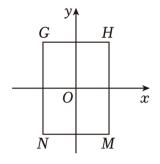
12. 如图,四边形 ABCD 是边长为 4的正方形,点 E 在边 CD 所在直线上,连接 AE,以 AE 为边, 作正方形 AEFG (点 A, E, F, G 按顺时针排列). 当正方形 AEFG 中的某一顶点落在直线 BD 上 时(不与点 D 重合),则正方形 AEFG 的面积为 ______.





14. 如图,正方形 *ABCD* 的边长为 3,△*EFG* 是等边三角形,点 *E*,*F*,*G* 分别在线段 *BD*. *BC*,*CD* 上,且 $GC = \sqrt{3}$,则 *DE* 的长为 ______.

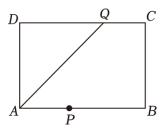




16. 如图,在长方形 ABCD 中, AB=DC=3cm, BC=AD=2cm, 现有一动点 P 从点 A 出发,以 1cm/s 的速度沿长方形的边 $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$ 运动,到达点 A 时停止;点 Q 在边 DC 上,DQ=BC,连接

AQ. 设点 P 的运动时间为 ts,则当 t=______s 时,以长方形的两个顶点及点 P 为顶点的三角

形与 $\triangle ADQ$ 全等. (不考虑两个三角形重合的情况)

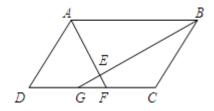


三. 解答题

17. 如图,在平行四边形 ABCD 中, $\angle BAD$ 、 $\angle ABC$ 的平分线 AF、BG 分别与线段 CD 交于点 F、G, AF 与 BG 交于点 E.

(1) 求证: $AF \perp BG$, DF = CG;

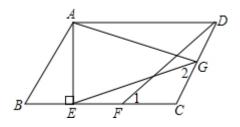
(2) 若 AB=10, AD=6, AF=8, 求 FG 和 BG 的长度.



18. 已知,如图,在 $^{\alpha}ABCD$ 中, $AE \perp BC$,垂足为 E,CE = CD,点 F 为 CE 的中点,点 G 为 CD 上的一点,连接 DF、EG、AG, $\angle 1 = \angle 2$.

(1) 若 CF=2, AE=3, 求 BE 的长;

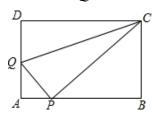
(2) 求证: $\angle CEG = \frac{1}{2} \angle AGE$.



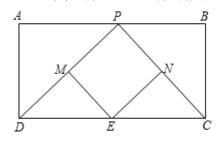
19. 如图,在矩形 ABCD 中,AB=5,AD=3,点 P 是 AB 边上一点(不与 A, B 重合),连接 CP,过点 P 作 $PQ \bot CP$ 交 AD 边于点 Q,连接 CQ.

(1) 当 $\triangle CDQ$ $\triangle CPQ$ 时,求 AQ 的长;

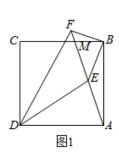
(2) 取 CQ 的中点 M, 连接 MD, MP, $MD \perp MP$, 求 AQ 的长.

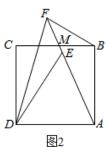


- 20. 如图,已知矩形 ABCD,AD=4,CD=10,P 是 AB 上一动点,M、N、E 分别是 PD、PC、CD 的中点.
 - (1) 求证: 四边形 PMEN 是平行四边形;
 - (2) 请直接写出当 AP 为何值时, 四边形 PMEN 是菱形;
 - (3) 四边形 PMEN 有可能是矩形吗? 若有可能,求出 AP 的长;若不可能,请说明理由.



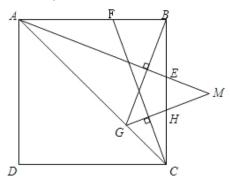
- 21. 如图,点 M 是正方形 ABCD 的边 BC 上一点,连接 AM,点 E 是线段 AM 上一点, $\angle CDE$ 的平分线交 AM 延长线于点 F.
 - (1) 如图 1, 若点 E 为线段 AM 的中点,BM: CM=1: 2, $BE=\sqrt{10}$, 求 AB 的长;
 - (2) 如图 2,若 DA=DE,求证: $BF+DF=\sqrt{2}AF$.





- 22. 如图,在正方形 ABCD 中, E、F 分别为 BC、AB 上两点,且 BE=BF,过点 B 作 AE 的垂线交 AC 于点 G,过点 G 作 CF 的垂线交 BC 于点 H 延长线段 AE、GH 交于点 M.
 - (1) 求证: ∠*BFC*=∠*BEA*;

(2) 求证: *AM=BG+GM*.

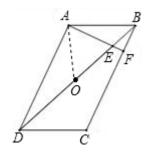


参考答案

一. 选择题

- 1. 解: 取 DE 中点 O, 连接 AO,
 - ∵四边形 ABCD 是平行四边形,
 - $\therefore AD//BC$,
 - $\therefore \angle DAB = 180^{\circ} \angle ABC = 105^{\circ}$,
 - $AF \perp BC$
 - $AF \perp AD$,
 - ∴∠*DAE*=90°,
 - $\therefore OA = \frac{1}{2}DE = OD = OE,$
 - DE = 2AB,
 - $\therefore OA = AB$,
 - $\therefore \angle AOB = \angle ABO$, $\angle ADO = \angle DAO$, $\angle AED = \angle EAO$,
 - $\therefore \angle AOB = \angle ADO + \angle DAO = 2 \angle ADO$
 - $\therefore \angle ABD = \angle AOB = 2 \angle ADO$,
 - $\therefore \angle ABD + \angle ADO + \angle DAB = 180^{\circ}$,
 - \therefore $\angle ADO = 25^{\circ}$, $\angle AOB = 50^{\circ}$,
 - $\therefore \angle AED + \angle EAO + \angle AOB = 180^{\circ}$,
 - $\therefore \angle AED = 65^{\circ}$.

故选: B.



2. 解: 如图,

延长 GP 交 DC 于点 H,

- :P 是线段 DF 的中点,
- $\therefore FP = DP$,

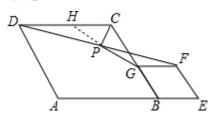
由题意可知 DC // GF,

- $\therefore \angle GFP = \angle HDP$,
- $\therefore \angle GPF = \angle HPD$,
- $\therefore \triangle GFP \cong \triangle HDP$,
- $\therefore GP = HP, GF = HD,$
- :四边形 ABCD 是菱形,
- $\therefore CD = CB$,
- $\therefore CG = CH$,
- $\therefore \triangle CHG$ 是等腰三角形,
- *∴PG*⊥*PC*, (三线合一)

 \mathbb{Z} : $\angle ABC = \angle BEF = 60^{\circ}$,

- $\therefore \angle GCP = 60^{\circ}$,
- $\therefore \frac{PG}{PC} = \sqrt{3};$

故选: B.



3. 解: ∵四边形 *ABCD* 是矩形,

 $\therefore \angle D = \angle BCD = 90^{\circ}$, DF = MF,

由折叠的性质可得: $\angle EMF = \angle D = 90^{\circ}$,

即 $FM \perp BE$, $CF \perp BC$,

∵BF 平分∠EBC,

- $\therefore CF = MF$,
- ∴*DF=CF*; 故①正确;
- $\therefore \angle BFM = 90^{\circ} \angle EBF, \angle BFC = 90^{\circ} \angle CBF,$
- $\therefore \angle BFM = \angle BFC$
- $\therefore \angle MFE = \angle DFE = \angle CFN$
- $\therefore \angle BFE = \angle BFN$,
- $\therefore \angle BFE + \angle BFN = 180^{\circ}$,
- *∴∠BFE*=90°,

即 $BF \perp EN$, 故②正确;

:在 $\triangle DEF$ 和 $\triangle CNF$ 中,

DF=CF

\∠DFE=∠CFN

- $\therefore \triangle DEF \cong \triangle CNF (ASA)$,
- $\therefore EF = FN$,
- $\therefore BE = BN$,

假设 $\triangle BEN$ 是等边三角形,则 $\angle EBN$ = 60° , $\angle EBA$ = 30° ,

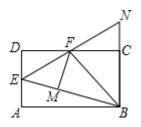
则
$$AE = \frac{1}{2}BE$$
,又: $AE = \frac{1}{2}AD$,则 $AD = BC = BE$,

而明显 BE=BN>BC,

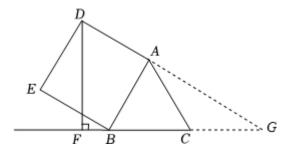
- ∴△BEN 不是等边三角形;故③错误;
- \therefore $\angle BFM = \angle BFC$, $BM \perp FM$, $BC \perp CF$,
- $\therefore BM = BC = AD = 2DE = 2EM$
- $\therefore BE = 3EM$
- $S_{\triangle BEF} = 3S_{\triangle EMF} = 3S_{\triangle DEF};$

故4正确.

故选: B.



4. 解: 方法一: 如图, 延长 DA、BC 交于点 G,



::四边形 ABED 是正方形,

$$\therefore \angle BAD = 90^{\circ}$$
, $AD = AB$,

$$\therefore \angle BAG = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
,

 $\therefore \triangle ABC$ 是边长为 2 的等边三角形,

$$\therefore AB = 2, \angle ABC = 60^{\circ},$$

$$\therefore AG = AB \cdot \tan \angle ABC = 2 \times \tan 60^{\circ} = 2\sqrt{3}$$

$$\therefore DG = AD + AG = 2 + 2\sqrt{3},$$

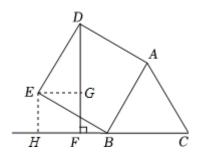
$$\therefore \angle G = 90^{\circ} - 60^{\circ} = 30^{\circ}$$
, $DF \perp BC$,

:.DF =
$$\frac{1}{2}DG = \frac{1}{2} \times (2+2\sqrt{3}) = 1+\sqrt{3}$$
,

故选 D.

方法二: 如图, 过点 E 作 $EG \perp DF$ 于点 G, 作 $EH \perp BC$ 于点 H,

则 $\angle BHE = \angle DGE = 90^{\circ}$,



∵ △*ABC* 是边长为 2 的等边三角形,

$$\therefore AB=2, \angle ABC=60^{\circ},$$

::四边形 ABED 是正方形,

$$\therefore BE = DE = 2, \ \angle ABE = \angle BED = 90^{\circ},$$

$$\therefore \angle EBH = 180^{\circ} - \angle ABC - \angle ABE = 180^{\circ} - 60^{\circ} - 90^{\circ} = 30^{\circ}$$
,

$$\therefore EH = BE \cdot \sin \angle EBH = 2 \cdot \sin 30^{\circ} = 2 \times \frac{1}{2} = 1, BH = BE \cdot \cos \angle EBH = 2\cos 30^{\circ} = \sqrt{3},$$

 $:EG \perp DF$, $EH \perp BC$, $DF \perp BC$,

$$\therefore \angle EGF = \angle EHB = \angle DFH = 90^{\circ}$$
,

∴四边形 *EGFH* 是矩形,

$$\therefore FG = EH = 1, \angle BEH + \angle BEG = \angle GEH = 90^{\circ},$$

- $\therefore \angle DEG + \angle BEG = 90^{\circ}$,
- $\therefore \angle BEH = \angle DEG$

在 $\triangle BEH$ 和 $\triangle DEG$ 中,

- $\therefore \triangle BEH \cong \triangle DEG \ (AAS)$,
- $\therefore DG = BH = \sqrt{3}$
- $\therefore DF = DG + FG = \sqrt{3} + 1$

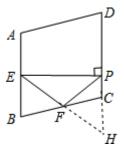
故选: D.

- 5. 解:延长 EF 交 DC 的延长线于 H 点.
 - ∵在菱形 ABCD 中, $\angle A=100^{\circ}$,E,F 分别是边 AB 和 BC 的中点,
 - $\therefore \angle B = 80^{\circ}$, BE = BF.
 - $\therefore \angle BEF = (180^{\circ} 80^{\circ}) \div 2 = 50^{\circ}$.
 - $\therefore AB//DC$, $\therefore \angle FHC = \angle BEF = 50^{\circ}$.

 $\forall : BF = FC, \angle B = \angle FCH,$

- $\therefore \triangle BEF \cong \triangle CHF.$
- $\therefore EF = FH.$
- $:EP \perp DC$
- $\therefore \angle EPH = 90^{\circ}$.
- ∴FP=FH, $\emptyset \angle FPC=\angle FHP=\angle BEF=50^{\circ}$.

故选: C.



6. 解:根据矩形的对角线相等且互相平分,

平行四边形 ABC_1O_1 底边 AB 上的高为 $\frac{1}{2}BC$,

平行四边形 ABC_2O_2 底边 AB 上的高为 $\frac{1}{2} \times \frac{1}{2}BC = (\frac{1}{2})^2BC$,

所以平行四边形 ABC_nO_n 底边 AB 上的高为 $(\frac{1}{2})^nBC$,

 $S_{\text{ER}ABCD} = AB \cdot BC = 5$,

:.
$$S_{\text{+from}} = AB \times \left(\frac{1}{2}\right)^{n} BC = 5 \times \left(\frac{1}{2}\right)^{n}$$
.

故选: C.

7. 解: 延长 AE, 交 BC 的延长线于点 G, 如图所示:

在矩形 ABCD 中, $\angle BAD = \angle ADC = \angle DCB = 90^{\circ}$,AD//BC,

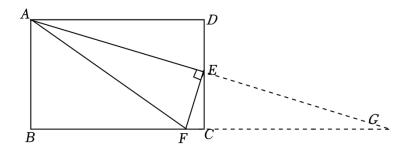
- $\therefore \angle ECG = 90^{\circ}$,
- **∵***E* 为 *CD* 边中点,
- $\therefore DE = CE$,

在 $\triangle ADE$ 和 $\triangle GCE$ 中,

∠AED=∠GEC

- $\therefore \triangle ADE \cong \triangle GCE \ (ASA)$,
- AE = GE,
- $:EF \perp AE$
- $\therefore EF$ 垂直平分 AG,
- $\therefore AF = GF$
- $\therefore \angle FAE = \angle G$
- AD//BC,
- $\therefore \angle DAE = \angle G$
- $\therefore \angle DAE = \angle FAE$,
- $\therefore \angle DAE = \frac{90^{\circ} \angle BAF}{2},$
- $\therefore \angle DAE + \angle AED = 90^{\circ}$, $\angle AED + \angle FEC = 90^{\circ}$,
- $\therefore \angle FEC = \angle DAE = \frac{90^{\circ} \angle BAF}{2},$
- $\therefore \angle FEC + \angle EFC = 90^{\circ}$,
- $\therefore \angle EFC = 90^{\circ} \frac{90^{\circ} \angle BAF}{2} = \alpha$
- $\therefore \angle BAF = 2\alpha 90^{\circ}$,

故选: A.



- 8. 解:如图, : 四边形 *ABCD* 是正方形,
 - $\therefore AD = AB, \ \angle BAD = ADC = 90^{\circ},$
 - $AE \perp AP$,
 - $\therefore \angle EAP = 90^{\circ}$,
 - $\therefore \angle BAE + \angle BAP = \angle BAP + \angle DAP = 90^{\circ}$,
 - $\therefore \angle BAE = \angle DAP$,
 - AE = AP = 1,
 - $\therefore \triangle ABE \cong \triangle ADP (SAS)$,
 - $\therefore \angle AEB = \angle APD$, BE = DP,
 - $: \triangle AEP$ 是等腰直角三角形,
 - $\therefore \angle AEP = \angle APE = 45^{\circ}$, $EP = \sqrt{2}AE = \sqrt{2}$,
 - $\therefore \angle APD = 180^{\circ} \angle APE = 180^{\circ} 45^{\circ} = 135^{\circ}$,
 - ∴ ∠*AEB*=135°,
 - $\therefore \angle BED = \angle AEB \angle AEP = 135^{\circ} 45^{\circ} = 90^{\circ}$,
 - $\therefore EB \perp ED$,
 - ∴ 1 正确;

:.
$$BE = \sqrt{BP^2 - EP^2} = \sqrt{(\sqrt{3})^2 - (\sqrt{2})^2} = 1 = AE$$
,

- ∴ ② 不正确;
- $\therefore \triangle ABE \cong \triangle ADP$,
- $S_{\wedge ABE} = S_{\wedge ADP}$,
- $\therefore \angle BAP = 90^{\circ}$, AE = AP = 1, $PB = \sqrt{3}$,
- $\therefore EP = \sqrt{2}, \angle AEP = 45^{\circ},$
- *∴∠AEB*=135°,
- $\therefore \angle BEP = 135^{\circ} 45^{\circ} = 90^{\circ}$,
- $\therefore S_{\triangle APD} + S_{\triangle APB} = S_{\triangle AEB} + S_{\triangle APB} = S_{\triangle AEP} + S_{\triangle EPB} = \frac{1}{2}AE \times AP + \frac{1}{2}EP \times BE = \frac{1}{2} \times 1 \times 1 + \frac{1}{2} \times \sqrt{2} \times 1 = \frac{\sqrt{2} + 1}{2},$
- ∴(3)正确;

如图,过点B作 $BO \perp AE$,交AE的延长线于点O,

则
$$\angle O=90^{\circ}$$
,

- $\therefore \angle BEO = 180^{\circ} \angle AEB = 180^{\circ} 135^{\circ} = 45^{\circ}$,
- $∴ \triangle BOE$ 是等腰直角三角形,

$$\therefore OE = OB = \frac{\sqrt{2}}{2}BE = \frac{\sqrt{2}}{2},$$

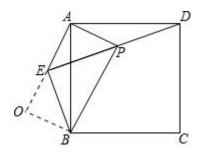
$$\therefore AO = AE + OE = 1 + \frac{\sqrt{2}}{2},$$

在 Rt
$$\triangle ABO$$
中, : $AB^2 = AO^2 + OB^2 = (1 + \frac{\sqrt{2}}{2})^2 + (\frac{\sqrt{2}}{2})^2 = 2 + \sqrt{2}$,

∴
$$S_{E\pi\pi ABCD} = AB^2 = 2 + \sqrt{2}$$
;

∴(**4**)正确;

故选: A.



二. 填空题

9. 解: *∵AD//BC*,

$$\therefore \angle ADF = \angle DFC$$

$$\therefore \angle ADF = \angle CDF$$
,

$$\therefore \angle DFC = \angle CDF$$
,

$$\therefore CF = CD$$
,

同理 BE=AB,

$$AB//CD$$
, $AD//BC$,

$$AB = CD$$
, $AD = BC$,

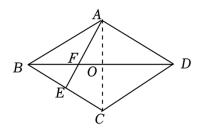
$$AB = BE = CF = CD = 5$$
,

$$BC = BE + CF - EF = 5 + 5 - 2 = 8$$

$$AD=BC=8$$
,

故答案为: 8.

10. 解:如图,连接 AC 交 BD 于点 O,



以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/017066043046006056