IP Toolbench vi1.2.11
Developer’s Guide

Author(s)

Yogesh Gathoo, Bradley Grove
IP Business Unit

Revision History

Date Version Comment

02/14/2002 1.0 Initial Draft

02/21/2002 1.1 After first level of feedback

04/17/2002 2.0 Adding support for 1.0.1

04/29/2002 2.1 Some grammatical / spelling fixes

05/08/2002 2.2 Report plug-in removed/ minor other
additions

08/19/2002 2.3 IPTB1.1 Additions

10/10/2002 2.4 Perl API added

10/16/2002 2.5 Appendix “Encryption Details” added

10/31/2002 2.6 Super Legacy/ Enhanced Legacy Plugin

11/01/2002 2.7 Updated Command Arguments & Super
Legacy plug-in

11/07/2002 2.8 Update to Super Legacy Plugin

12/20/2002 2.9 Changes to simplify PTF

01/06/2003 3.0 Major restructuring corresponding to
simplification and improving readability.

01/14/2003 3.1 Proofreading edits

01/15/2003 3.2 Added contents for MEGACORE &
Creating new plug ins

4/11/2003 3.3 Updated the default of the Java_dir
command line option and added
configuration information for the default
Perl libraries.

5/20/2003 3.4 Includes wizard.ptf samples for various IP|
Toolbench versions. Look at TOC

8/18/2003 3.5 IP Toolbench 1.2 kick off

11/17/2003 4.0 1.2.2 Revisions

11/17/2003 4.1 Updated based on feedback from Yogesh

11/18/2003 4.2 Update to LegacyMode section based on
input from Dave Moore.

11/24/2003 4.3 Added info on -devicefamily /[-
projectname / -projectdir switches.

12/10/2003 4.4 Enhancements to Simgen Plugin

1/6/2004 4.5 Added Simgen “parameter” setting

1/20/2004 4.6 Added section_name attribute to
DefaultDocumentationPlugin and other
minor edits

4/23/2004 4.7 Changing core data in Non-MVC wizard
section added

9/27/04 4.8 Minor updates for v1.2.7, including support
for Tcl scripts in defailtAddProjectFiles.

7/12/05 4.9 Update for Message Window support
added to CustomCoreWizard Plugin

11/3/05 4.10 Updates for 1.2.11, including design
assistant warning suppression

8/8/2006 5.0 First updates for 1.3.0 - HDLGenerator

Plugin

Table of Contents

(Ul o To 1Yo i o T B e Yol B T g o= o | 5
(@0 o 1YY o a0 1= 5
| e To] =T ool o @ 7T oY AT 5
What does the <Wizard Name>.JAR file CONtain?. .. .cciiiiiiiiiiii i i 7
What does the IP Toolbench Daily Build CONE@in?coviiiiiiiiii i e e ranee e eas 7
| oo 1= o ol o TS Tl == 1Y oo) 8
[N TS o O = R 1= = [ool | V2 9
Changing core data in NON-MVC Wizards........ooviiiiiii i et e e e s e s e s s e s s s s a e 10
Configuring IP Toolbench for YOUr WizZard.......oiiiiiiiiiiiiiiiiiii s e s e e e n e neannnnnnnnnnnnns 10
1= 2T [] 2 10
L] L= o A v T o 10 = 10

N I S IS = O 1 (0 PP 11
L1 Lo A v] o 10 12

R Y (OS] = O 1 (6 P 12
FILE . .ttt ettt ettt ettt et e 13
L]0 Lo A v T o 10 13

A L o 0 14
L= 0 LS 2 o {010 (3 14

o S A I 14
Table Of A DULES .. e 14

0 P 15
LI L= o A w1 10 = 15

L@] 17 15
LI L= o A w1 o 10 16

110 o O = 10)] = 2 16
]I N A] I = P 17

PORT _WIRIN Gutttiiititt ittt sttt et s et ettt e et e e e e e st e e e st e e e s et e e s et et e e e et e e e aate e eaanaeenn 18

I 1 Y = O 11 (0 S 18

o T 1P 19
L] (e = Y tw] o 10 (T 19
(@] 0 21 2 1o o JET=T 110 31 19
Table of attributes for UL PIUg-iNS ... oottt et e e e e e e e r e e e e raanaes 20
Modifying Plug-IN SeCHION Data....ooiiiiiiii i s e e e 20
Table Of A DULES .. e 21

1Tz 100 o1 (=T 2= e o« 21
How to link additional Java packages into IP Toolbench?.......ccoiiiiiiiiiiiiiiiiiiiiii e 22

[E= 11 41 01 = 22

How to set Boolean Value N PR 2. ittt e e s eee e s s s e e s s saneeee s s saannnneeesrannnes 22

What does colon *:” signify in SOMe asSIGNMENTS? ...t ees 22
Standard plug-iNs & COMPONMENES ...ttt ettt s st e e et s aeee e s s sanane e s s s s nneeesssannnneessannnnnes 23
01T LA 7=t ST o 18 o Ty o TR 23
L1 Lo A v o 10 = 23
= 1] 5= 24
JAVA HT ML VWAL PlUG i ottt ittt ittt ettt e e et e e e e s a e e et e e st e r e e e rt e e e anaeeenes 25
LI o1 LS =Y oL g {0 0 25
€= 1.1 0= 25
Linking HTML Documents to IP Toolbench Data.......ccciiiiiiiiiiiiiiiiiiiiiesrnreereeneeeeeeeenanes 26
Native Web BrowSer PlUG-in .ooviiiiiii i i e e st a s e e e e e s s s e s e e e s s e nnnnnnns 27
JLIE= 1 Lo A ot w o 10 = 27

L= 0= 27

o Yol W 7= =l o TN [T o 28

LK1 Lo A v o 10 = 29
Default Simgen ENable PlUg-in......coiiiiii it s s e s s e e s s s e e e eannnnneenns 30
Guinevere Visual Editor PlUg=ino.eiiiiriiiiii i st era e s e e s sane e saane e ranaeeaas 32

L1 Lo A v o 10 = 32

= 1] 5= 32
[I=Ta = Tor AT 4= T o B 8 T N o 33

How to link additional third party Java packages with IP Toolbench?...........cccovviiiiiiiiinenns 33
WIZARD _ARGUMENT S, .ttt tittties st s s e s s e e s ee s snee s san e e sa e e s s e e s san e e s anne s sann e s annnesnnnens 34

€=] 1.1 0] = 34
CUSEOM Core WizZard PlUG in .ttt ettt ettt te e ta e s aaattaeeaeereeeeraannnns 35

QLI Lo N ot w o 10 = 35

= 1.1 0] S 36
1S3 L1 oo N = [T T 37

LK1 Lo A o v o 10 = 37

= 0= 37
LTl B o (0T T 38

LK1 (e =Yt 1 L= 38

T .01 38
| DI =Y o= T o= Y o gl =] [0 T o 39

JLIE= 1o Lo 2 v T o 10 39

I G 7 2 39

€=] 1.1 0= 39
Add Project Files PlUg-INn.....coiiiiiiiiiiiiiii it i i st e st a e e e s s s n e s e e nneenennennanns 41

QLI Lo A ot w o 10 = 41
1 LT 1= T 16 T e 42

JLIE= 1 Lo A ot w o 10 = 43
LT Tt ar= L I T 1=) I 2 18 o Lo 44

LK1 Lo A v o 10 = 44

=1] 0= 44

Creating @ CUSTOM PlUG=iN ..ttt e et e et e st s st e st e ae s s a e e sann e s anne s anneas s 45
[T o =T o <l [T L o T 45
) = 18 T [o 45
LA o o = = 18 T T 45

|1 oTo] 1 0=T o ol o I @(o o 1 g =1 e I 11 T3 47
LS | of o e T [49
LI 51 49

=[]0 (T 2= o 1N o PP 49

(=T I [(=Y =1 o 50

What is Perl encryplion/deCry pltion 2. ... i e e 52
LA = L TN | =Y = = 1o Y o T o 52
| o To] o= ool T o = N g 1= =] o T 52

ENCryption ReTUNN/EmOr COOES . uvviiiiiiiiittt ittt e e e et e e s e e e st s e e e e e annneeenas 53

Embedding IP Toolbench in your appliCationoiiiiiiiiiiiiii s e e naeeeas 54

| oo =T ool o 1Y I G 54
Configuring IP Toolbe nch for your Wizardooeeiiiiii i e aneee s 54

= Taal o] (RN 4= o o) 54

Purpose of this Document

This documentis intended for IP Developers seeking to understand how to use IP Toolbenc hv1.2.11
with their IP core releases. It covers various aspects of customization and guidelines for packaging and
deployment.

Conventions

Blue textis used to indicate code or code related synonyms
All PTF sections are in caps
All PTF attributes are in lower case.

All caps heading indicate PTF section where appropriate

IP Toolbench Overview

IP Toolbench is a framework designed for developing MegaWizards. It has a component architecture
that enables IP Developers to select, customize and configure “plug-ins” to implement the IP
customization process on the customer’s desktop. The framework holds the core configuration data in
a global database that can be read by any plug-in.

The following diagram illustrates the IP Toolbench component architecture. Each plug-in
performs a task: “Guinevere” displays the parameterization GUI, “Core Update” checks for a new
version of the core on Altera’s website, and “Generate Core” creates a top-level wrapper that
parameterlzes the core.

IP Players

Stand Alone Quartus SOPC DSP
MWPIM Builder Builder -

Config File IP Toolbench Configurable Core Data Control Logic

S A A ™
.................. m m .. m

Guinevere Core Simulation Talkback
Update Models

Plug ins

Generate
Core

The IP Toolbench framework is built on central configuration file (wizard.ptf) that defines the
core, initializes IP Toolbench configurable core data, and specifies which plug-ins should be loaded for
this core. Currently, this configuration f ile is written in PTF format, but we plan on eventually migrating
this to XML using Corespec.

The IP Toolbench package contains six modules:

Flowbase: Java interfaces and base classes for IP Toolbench framework and plug-ins. Flowmanager:
Implements IP Toolbench framework as defined in Flowbase package.

Launcher: Entry point to IP Toolbench, implements Framework Class Loader that loads IP
Toolbench with supporting packages and launches it. This allows us to implement a deferred linking
of components.

<Wizard name>: Jar package created by the IP Developer, contains wizard.ptf (IP Toobench
configuration File) and core specific resources, possibly including Java and Perl code. Ref erto
the section “What does the <Wizard name>.jar file contain?” for more info.

<Supporting Packages>: Additional third party packages needed to run IP Toolbench or the wizard
specific code. The packages include in the IP Toolbench distribution are:

(0]

o

o

O

JDOM - http://www.jdom.org - Distributed under the JIDOM license
http://dev.eclipse.org/viewcvs/indextech. cgi/org. eclipse.stellation/dow nloads/libs/abo
ut-jdom.html?rev=HEAD

XERCES - http://xml.apache.org/ - Distributed under the Apache License -
http://xml.apache.org/dist/LICENSE.txt

Perl - http://www.perl.org/ - Distributed wunder the Artistic License -
http://www.perl.com/Ipt/a/language/misc/Artistic. html

STLPort - http://www.stlport.org/ - Distributed under the STLPort License -
http://www.stlport.org/doc/license.html

ePerl: A native C++ based library linked into IP Toolbench. This library includes the Altera IP
encryption and licensing libraries, along with an embedded Perl v5.8.3 interpreter.

Flow Manager Flowbase Wizard Domain
Domain
Interfaces <Wizard name>
Flow Manager Native links
PN Custom Controls PN IP Core Java
i ~ | | Model, Plug-ins "1 | | Package
Std. Plug ins base classes 1. Wizard. ptf
1. Symbol
2. Resources
2. PERL .
3. HDL files
3. HTML 4 D
4. Guinevere - Documents
5. Top-level
>. Generate 6. Megafunction
6. Simgen... IJNI/PERL/IP o 9t.
Licensing escription...
Extension

Supporting packages: XML/PTF parsers, Guinevere, JBCL, and JDOM etc.

IP Toolbench (Launcher Domain)

What does the <Wizard Name>.JAR file contain?

e« Configuration Files

1. Master Configuration File (wizard.ptf)

2. Guinevere GUI description (which may also be included as part of wizard.ptf)
e Java / Perl Code

1. Model or Top-level generator to create Ports and Constants

2. Any other core/design flow specific plug-ins
¢ Manifest.MF

1. Wizard package version though the Manifest-Version attribute

2. Location of the master configuration file through the Wizard-Database attribute

The following is an example of a wizard package Manifest.MF file:
Manifest-Version: v12.0
Wizard-Database: altera/ipbu/WDivideWizard/wizard.ptf

A Jar file is a Java archive file. It is an aggregation of files, similar to a zip or tar file. It is created
using the jar utility included with the Sun JDK. Before creating the Jar package, we put all of the
files into a subdirectory named “altera/ipbu/<Wizard name>". We then package the entire tree
into the Jar file. This directory structure ensures that the core specific files are in a unique Java
package.

The IP Developer is free to include other files into the <wizard name>.jar files. Some examples of
other files that might be included are:

e Documentation

e HTML Pages

e HDL / Design Files

What does the IP Toolbench Daily Build contain?

Nightly builds are created by checking out the latest code off the main branch of the CVS tree. IP
Developers can access these builds using through the Windows share located at \\sj-ipbusoft\builds
or the the NFS mount to the apps2 partition (/apps2/IP/builds). Each version of IP Toolbench has a
separate build directory in this share. Within each version directory are the numbered nightly builds.
These builds remain for 2 weeks after creation bef ore being deleted. In addition, releases builds are
marked with a “rel_” prefix. Release builds will never be deleted. Each version directory has a
directory named “latest” that contains the last successful build for that version.

IP Toolbench v1.2.7 supports Windows NT/2000/XP, Red Hat Linux 7.3/8.0/Enterprise 3 WS, and
Solaris 8 and 9.

An IP Toolbench build includes:

e IP Toolbench Tarball: A .tar.gz file containing the IP Toolbench build.

e JRE: Java Runtime Environment 1.4.1. While IP Toolbench v1.2.2 and above will use the JRE
inside of the Quartus bin directory by default, a Java runtime is also included in the build to
allow us to run the IP Toolbench executable on machines where a valid Quartus installation is
not available. The Java Runtime is not included in the tarball.

o Devtools: Contains

1. A build of Perl.exe supporting Altera’s 3DES IP Encryption. This is a standalone Perl
5.8.3 interpreter used for developing scripts to be included with IP Toolbench. Inside
IP Toolbench, we intend for these scripts to run using the Perl plug-in.

3.

4

Perlcrypt.exe for encrypting Perl scripts and HDL files using 3DES encryption.
Perlcrypt encrypted f iles cannot be read by Quartus, only by the IP Toolbench Perl
extensions specifically intended to read Perlcrypt f iles.

eperl.dll, Native library working with perl.exe

Javadocs for IP Toolbench framework

e ip_toolbench: Contains a versioned sub folder with:

nhwne

ip_toolbench.exe: Executable to launch IP Toolbench

f lowbase.jar

f lowmanager.jar

eperl and other dependencies

util directory containing Altera developed and third party packages such as xerces.jar,
sopc_wizard.jar, jdom.jar, netlist_to_hdl.jar. These packages are required by IP
Toolbench.

IP Toolbench Screen Shot

e Screen shot for vi1.2.x and earlier

Wizard
Title

&} ¥iterbi Compiler 2.... =

&

MegaCore’

Logo
Section

LLI:J] Aboutthis Core

Documentation

Display Symbol

-|E Step 1: Parameterize

Q .| Step 2: Generate
r

Viterbi Compiler (WEB)

Netlist Class Hierarchy

IP Toolbench is a framework for writing plug-ins that act on the configurable core data. The plug-ins
view of this data is the Netlist Class Hierarchy. A hierarchical list of these classes follows:

ModelBaseClass encapsulates all Netlist objects and offer MVC based base implementation
+ NetlistInterface composing context IP Core module with its parameters, ports and constants
+« NetlistPortInterface contains a list of ports and methods to add, remove, and modify
them.
o NetlistPort class encapsulating individual port
¢ NetlistConstantInterface contains a list of constants, which correspond to VHDL generics
and Verilog parameters, and methods for adding, removing and modifying them.
o MNetlistConstant class encapsulating each individual constant
¢ NetlistFileInterface contains a list of HDL f iles used to implement this IP core and methods
for adding, removing and modifying files.
o NetlistConstant class encapsulating each individual file.
« NetlistBaselLibraryInterface contains a list of VHDL libraries and methods for adding,
removing and modifying them.
o NetlistLibrary class encapsulating each individual library
« NetlistGlobalPrivateInterface contains a list of global privates and namespaces based on
plug-ins
o NetlistPrivateInterface contains a list of privates for each namespace and
methods to add, remove or modify them.
= NetlistPrivate class encapsulating each individual private at the namespace
level
e Range describes valid value set for a private
o NetlistPrivate class encapsulating each individual private at the base level

Following is an UML describing the Netlist hierarchy
NetlistBaselnterface

T A A
NetlistInterface T
T NetlistBasePrivatelnterface
T NetlistBasePortinterface
NetlistWriteableInterface

NetlistBaseConstantInterface
NetlistPrivateInterface

NetlistBaseLibraryIntetface
T NetlistPortInterface

NetlistWriteablePrivatelnterface
NetlistConstantIntetface

NetlistWriteablePortInterface
NetlistWriteableLibraryInterface

T NetlistWriteableConstantInterface
Indicate base/derived class relationship

Ref erto the IP Toolbench javadocs for more detailed description on methods and data members of
these classes.

Changing core data in NON-MVC Wizards

For changing core module data in NON-MVC wizards developers will have to typecast NETLIST(),
PORTS(), CONSTANTS(), PRIVATES() and FILES() to respective writeable interfaces

For example, to change the module name in a NON-MVC wizard, typecast NETLIST() object to
NetlistWriteableInterface and call setModuleName() method on it. Referto IP Toolbench Java Docs
for more information.

((NetlistWriteableInterface)NETLIST()).setModuleName(“sl_top”);

Configuring IP Toolbench for your wizard

The most critical part of defining an IP Toolbench wizard for your core is the creation of the IP Toolbench
configuration file. This section explains the format of the configuration file in detail.

Designers can control, configure IP Toolbench framework through a single file named “wizard.ptf.” This
file contains PTF structured information organized under single root section called "MEGACORE"

MEGACORE

Data in wizard.ptf f ile is organized under a root section named MEGACORE. MEGACORE contains four
sections:

1. A description of core: title, version, ordering codes and other details.

2. A NETLIST_SECTION that holds port and parameter data for the core.

3. A SOPC_BUILDER section that defines how this core interfaces to an SOPC Builder system using
Avalon. This sectionis optional. It is only required if the IP Toolbench will be launched under SOPC
Builder.

4. A PLUGIN_SECTION that lists the IP Toolbench plug-ins used to configure this core.

Table of Attributes

Name Type Description Default
title String | Full “longname” of the megafunction. NULL
version String | Version of the megafunction release. NULL
Must be prefixed with letter ‘v’
format_version | String | Specifies the wizard.ptf version. For IP NULL
Toolbench v1.2.x, this must be set to
120.
short_title String | Short name for your megafunction. This NULL
should be less than 17 characters.
release_datex* String | Date when core was released NULL
product_id* String | Unique ID for your megafunction. For NULL
Altera MegaCores, this is assigned by
IPBU marketing
vendor* String | Your company name NULL
vendor_id* String | Your company ID assigned by the IPBU NULL
marketing group.

copy_rights*

String

The copyright message

NULL

opencoreplus*

String

“Yes” if supported else “No”

NULL

*Attributes used by “About this Core” html page

The Megacore section contains sub-sections for listing ordering codes, supported devices,

certifications, and simulation models.
a list. Each of these sections is used by the “About this Core” page.

ORDERING_CODES

code ="IP-WDIVIDE";

}
SIMULATION_MODELS

{

support ="IP Functional Simulation Model (VHDL /Verilog HDL(";

}
CERTIFICATIONS

{

certificate = "SOPC Builder Ready";
certificate = "Atlantic(TM) Compliant";

}
DEVICES
{

device = "Stratix(TM)";
device = "Stratix GX";
device = "Stratix II';
device ="Cyclone(TM)";

}

Each of these sections contains attributes that are treaded as

IP Developers can add more information to the MegaCore section and link it with their HTML pages.

Ref er to Java HTML Viewer Plug-in for more information.

The simplest valid Wizard.ptf looks as follows:

MEGACORE
{

#Attributes for title and version

title = “Viterbi Megacore Megafunction”;
version = “v1.0.0”;
short_title = “Viterbi”;
... #Aboutthis Core related stuff
#Megacore netlist related info
NETLIST_SECTION

{.}

#IP Toolbench plug-ins info
PLUGIN_SECTION

{

} #end of MEGACORE section

NETLIST_SECTION
The NETLIST_SECTION contains a section named STATIC_SECTION.

Any data in the NETLIST_SECTION

dynamically generate the ports and constants.

can be dynamically generated.

Typically,

the wizard will

PLEAB AR SRR TS, AW RSB —FEHNE.
B RRERER4A, BiH: https://d. book118. com/02524333311

0011131

https://d.book118.com/025243333110011131
https://d.book118.com/025243333110011131

