

汇报人:

2024-01-15





引言





### CVI制备CC复合材料的重要性

CVI(化学气相渗透)是一种广泛应用于制备高性能碳/碳(CC)复合材料的方法,具有优异的力学性能和高温耐性,在航空航天、核能等领域有重要应用。

#### 混合碳源对CVI制备CC复合材料的影响

在CVI过程中,使用不同的碳源对复合材料的性能有显著影响。 C3H6和C2H2是常用的混合碳源,研究它们对CVI制备CC复合材料的影响对于优化制备工艺、提高材料性能具有重要意义。



# 国内外研究现状及发展趋势

### 国内外研究现状

目前,国内外学者已经对CVI制备CC复合材料进行了广泛研究,包括碳源的选择、工艺参数的优化、复合材料的性能等方面。然而,关于混合碳源对CVI制备CC复合材料影响的研究相对较少。

## 发展趋势

随着高性能CC复合材料需求的不断增加,对CVI制备工艺的优化和混合碳源的选择将成为未来研究的重点。同时,随着计算机模拟技术的发展,利用模拟方法研究混合碳源对CVI制备CC复合材料的影响也将成为一种趋势。



# 研究内容、目的和意义

## 研究目的

通过本研究,旨在深入了解混合碳源对CVI制备CC复合材料的影响,为优化制备工艺、提高材料性能提供理论支持和实践指导。

## 研究意义

本研究不仅有助于丰富和发展CVI制备CC复合材料的理论体系,还将为高性能CC复合材料的制备和应用提供新的思路和方法,具有重要的科学意义和应用价值。

#### **GRAPHICS**

ipsum dolor sit amet, consectetuer ting elit. Aenean commodo ligula eget Aenean massa. Cum sociis natoque bus et magnis dis parturient montes, un ridiculus musLorem ipsum dolor s

#### INFOGRAPHICS

Lorem ipsum dolor sit amet, consectet ad piscing e.it. Aenean commodo ligul dolor. Aenean massa. Cum seciis nator penatibus et magnis dis parturient mo nascetur ridiculus mustorem ipsum cc

### adipiscing elit. Aenean commodo

#### **GRAPHICS**

ipsum dolor sit amet, consectetuer ding elit. Aenean commodo ligula eget. Aenean massa. Cum sociis natoque bus et magnis dis parturient montes, unridiculus must orem ipsum dolor s

# Sample Lorem ipsum dolar Text sit amet, consactstuer adipiscing elit. Aenean commodo (iguus eget dolor.

#### Lorem ipsum dalor Text sit amet, consectetuer adipiscing elit.

#### INFOGRAPHICS

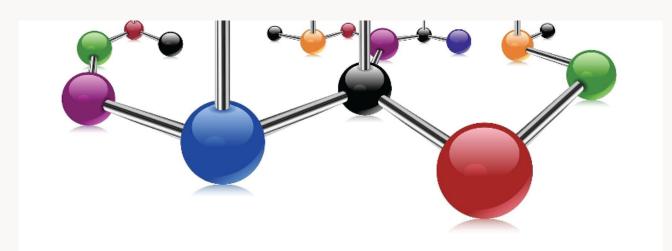
Lorem i psum dolor sit amet, consecte ad piscing e.it. Aenean commodo ligul dolor. Aenean massa. Cum sociis naro penatibus et magnis dis parturient mo nascetur ridiculus must orem i psum ci

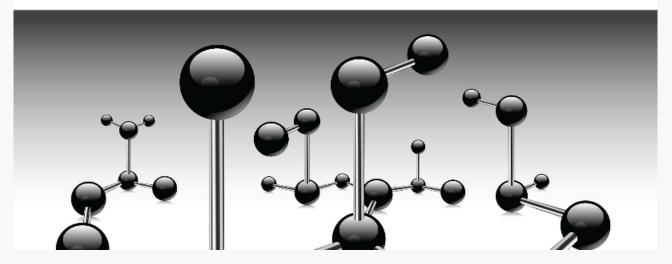


实验材料与方法



### C3H6C2H2混合碳源


由丙烷(C3H8)和乙炔(C2H2)按一定比例混合而成,作为化学气相渗透(CVI)的碳源。


### 基体材料

选用合适的基体材料,如碳纤维布、石墨纸等,作为CC复合材料的增强体。

### 催化剂

采用适当的催化剂,如镍、铁等,以促进 C3H6C2H2混合碳源的裂解和沉积。

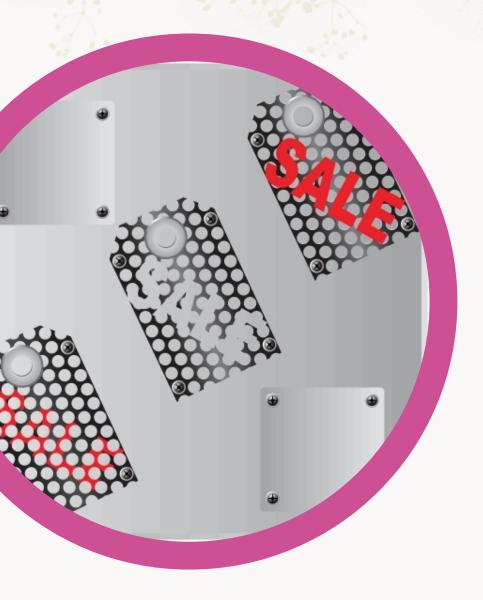








在一定的温度和压力条件下,将 C3H6C2H2混合碳源通入放置有 基体材料的反应室中,通过催化 剂的作用使混合碳源裂解并沉积 在基体材料上,形成CC复合材料。


## 材料表征

采用扫描电子显微镜(SEM)、X 射线衍射(XRD)、拉曼光谱 (Raman)等手段对制备的CC复 合材料进行形貌、结构和成分分 析。

## 性能测试

对CC复合材料进行力学性能测试, 如弯曲强度、压缩强度等,以评 估其力学性能。





1. 准备基体材料

01

02

03

将碳纤维布或石墨纸等基体材料裁剪成适当大小并清洗干净, 去除表面杂质。

2. 配置混合碳源

按照一定比例将丙烷和乙炔混合,制备成C3H6C2H2混合碳源。

3. 装载基体材料和催化剂

将清洗干净的基体材料放置在反应室中,并在适当位置放置催 化剂。

# 实验过程与步骤



### 4. 通入混合碳源

在一定的温度和压力条件下,将 C3H6C2H2混合碳源通入反应室 中。



### 5. 控制反应条件

通过控制反应温度、压力、碳源 流量等参数,使混合碳源在催化 剂作用下裂解并沉积在基体材料 上。



### 6. 终止反应

当达到预定的反应时间或基体材料完全被碳覆盖时,停止通入混合碳源并降温降压至安全范围。

# 实验过程与步骤



## 7. 取出样品

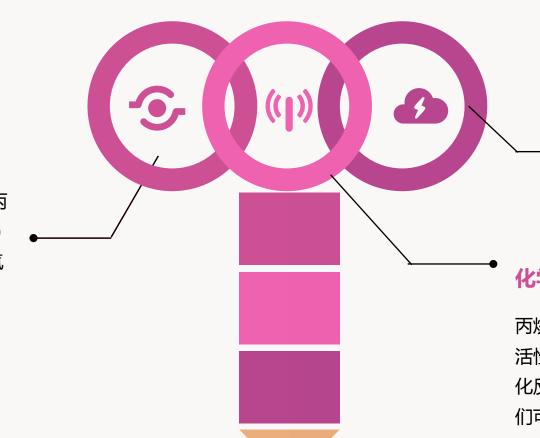
待反应室冷却后,取出制备好的CC复合材料样品。

## 8. 材料表征与性能测试

对样品进行形貌、结构和成分分析以及力学性能测试。



03


C3H6C2H2混合碳源特性分析



# C3H6C2H2混合碳源物理化学性质

#### 成分组成

C3H6C2H2混合碳源主要由丙炔(C3H4)和乙炔(C2H2)组成,两者均为不饱和烃类气体。



#### 物理性质

丙炔和乙炔在常温下均为无色、 易燃、有毒的气体,具有刺激性气味。它们的沸点、熔点和 密度等物理性质相近,但略有 差异。

#### 化学性质

丙炔和乙炔均具有较高的化学 活性,易于发生加成反应、氧 化反应等。在特定条件下,它 们可以发生聚合反应生成高分 子化合物。 以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: <a href="https://d.book118.com/028116130053006075">https://d.book118.com/028116130053006075</a>