云南省普洱市 2023-2024 学年数学高三上期末复习检测试题

注意事项:

- 1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再 选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
- 3. 考试结束后,将本试卷和答题卡一并交回。
- 一、选择题: 本题共 12 小题, 每小题 5 分, 共 60 分。在每小题给出的四个选项中, 只有一项是符合题目要求的。
- 1. 直三棱柱 $ABC A_1B_1C_1$ 中, $CA = CC_1 = 2CB$, $AC \perp BC$,则直线 BC_1 与 AB_1 所成的角的余弦值为(

- A. $\frac{\sqrt{5}}{5}$ B. $\frac{\sqrt{5}}{2}$ C. $\frac{2\sqrt{5}}{5}$ D. $\frac{3}{5}$

- 2. 若0 < a < b < 1,则 a^b , b^a , $\log_b a$, $\log_{\frac{1}{a}}b$ 的大小关系为()
- **A.** $a^b > b^a > \log_b a > \log_{\frac{1}{a}} b$ **B.** $b^a > a^b > \log_{\frac{1}{a}} b > \log_b a$
- C. $\log_b a > a^b > b^a > \log_{1} b$ D. $\log_b a > b^a > a^b > \log_{1} b$
- 3. 已知集合 $A = \{x \mid \log_2(x-1) < 2\}, B = N, 则 A \mid B = ($

- A. $\{2,3,4,5\}$ B. $\{2,3,4\}$ C. $\{1,2,3,4\}$ D. $\{0,1,2,3,4\}$
- 4. 以下关于 $f(x) = \sin 2x \cos 2x$ 的命题, 正确的是
- A. 函数 f(x) 在区间 $\left(0, \frac{2\pi}{3}\right)$ 上单调递增
- B. 直线 $x = \frac{\pi}{8}$ 需是函数 y = f(x) 图象的一条对称轴
- C. 点 $\left(\frac{\pi}{4},0\right)$ 是函数 y=f(x) 图象的一个对称中心
- D. 将函数 y = f(x) 图象向左平移需 $\frac{\pi}{8}$ 个单位,可得到 $y = \sqrt{2} \sin 2x$ 的图象
- 5. 已知复数z = (1+i)(3-i)(i为虚数单位) ,则 z 的虚部为 ()
- **B.** 2*i*
- C. 4
- **D.** 4*i*
- 6. 已知函数 f(x) 是定义在 R 上的偶函数,当 $x \ge 0$ 时, $f(x) = e^x + x$,则 $a = f(-2^{\frac{3}{2}})$, $b = f(\log_2 9)$, $c = f(\sqrt{5})$

的大小关系为(

- **A.** a > b > c **B.** a > c > b **C.** b > a > c **D.** b > c > a

7.

小明有3本作业本, 小波有4本作业本, 将这7本作业本混放在-起, 小明从中任取两本.则他取到的均是自己的作业本 的概率为(

- C. $\frac{1}{3}$ D. $\frac{18}{35}$

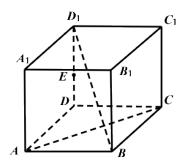
8. 已知实数x,y满足线性约束条件 $\begin{cases} x+y \ge 0 \\ x-y+2 \ge 0 \end{cases}$,则 $\frac{y+1}{x}$ 的取值范围为(

- A. (-2,-1]
- B. (-1,4]
- C. [-2,4) D. [0,4]

9. 已知函数 $f(x) = 4\sin\left(2x - \frac{\pi}{6}\right), x \in \left[0, \frac{13}{3}\pi\right]$,若函数 F(x) = f(x) - 3 的所有零点依次记为 $x_1, x_2, x_3, ..., x_n$,且

 $x_1 < x_2 < x_3 < ... < x_n$, $M x_1 + 2x_2 + 2x_3 + ... + 2x_{n-1} + x_n = 0$

- A. $\frac{50\pi}{2}$
- B. 21π C. $\frac{100\pi}{3}$ D. 42π


10. 若向量 m = (0, -2) , $n = (\sqrt{3}, 1)$, 则与 2m + n 共线的向量可以是 ()

- **A.** $(\sqrt{3}, -1)$ **B.** $(-1, \sqrt{3})$ **C.** $(-\sqrt{3}, -1)$ **D.** $(-1, -\sqrt{3})$

11. 在明代程大位所著的《算法统宗》中有这样一首歌谣,"放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要 求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样. 马吃了牛的一半,羊吃了马的一半. "请问各畜赔多少? 它的大意 是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1 斗=10 升), 三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、 马、牛的主人应该分别向青苗主人赔偿多少升粮食? (

- **A.** $\frac{25}{7}, \frac{50}{7}, \frac{100}{7}$ **B.** $\frac{25}{14}, \frac{25}{7}, \frac{50}{7}$ **C.** $\frac{100}{7}, \frac{200}{7}, \frac{400}{7}$ **D.** $\frac{50}{7}, \frac{100}{7}, \frac{200}{7}$

12. 如图,点 E 是正方体 ABCD- $A_1B_1C_1D_1$ 的棱 DD_1 的中点,点 F, M 分别在线段 AC, BD_1 (不包含端点)上运动, 则 (

- A. 在点 F 的运动过程中,存在 $EF//BC_1$
- B. 在点 M 的运动过程中,不存在 $B_1M \perp AE$
- C. 四面体 EMAC 的体积为定值

D.	四面体 FA ₁ C ₁ B	的体积不为定值
----	--------------------------------------	---------

- 二、填空题:本题共4小题,每小题5分,共20分。
- 13. 已知双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的渐近线与准线的一个交点坐标为 $(1, \sqrt{3})$,则双曲线的焦距为_____.
- 14. 设 f(x) 为偶函数,且当 $x \in (-2,0]$ 时, f(x) = -x(x+2) ; 当 $x \in [2,+\infty)$ 时, f(x) = (a-x)(x-2) . 关于函数 g(x) = f(x) m 的零点,有下列三个命题:
- ①当a=4时,存在实数m,使函数g(x)恰有5个不同的零点;
- ②若 $\forall m \in [0,1]$, 函数 g(x) 的零点不超过 4 个,则 $a \le 2$;
- (3)对 $\forall m \in (1, +\infty)$, $\exists a \in (4, +\infty)$, 函数 g(x) 恰有 4 个不同的零点, 且这 4 个零点可以组成等差数列.

其中,正确命题的序号是 .

- 15. 连续掷两次骰子,分别得到的点数作为点 P 的坐标,则点 P 落在圆 $x^2 + y^2 = 19$ 内的概率为 .
- 16. 设x、y满足约束条件 $\begin{cases} x+y \ge a \\ x-y \le -1 \end{cases}$, 且z = x + ay 的最小值为 7,则a =______.
- 三、解答题: 共70分。解答应写出文字说明、证明过程或演算步骤。
- 17. (12分)某商场为改进服务质量,随机抽取了 200 名进场购物的顾客进行问卷调查.调查后,就顾客"购物体验"的满意度统计如下:

	满意	不满意
男	40	40
女	80	40

- (1) 是否有 97.5%的把握认为顾客购物体验的满意度与性别有关?
- (2) 为答谢顾客,该商场对某款价格为 100 元/件的商品开展促销活动. 据统计,在此期间顾客购买该商品的支付情况如下:

支付方式	现金支付	购物卡支	APP 支付
频率	10%	30%	60%
优惠方式	按9折支	按8折支	其中有 1/3 的顾客按 4 折支付, 1/2 的顾客按 6 折支付, 1/6 的顾客按 8 折支付

将上述频率作为相应事件发生的概率,记某顾客购买一件该促销商品所支付的金额为X,求X的分布列和数学期望。

附表及公式:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
.

$P(K^2k_0)$	0.15	0.10	0.05	0.025	0.010	0.005	0.001
k_0	2.072	2.706	3.841	5.024	6.635	7.879	10.828

- 18. (12 分) 已知函数 $f(x) = ae^x x^2$.
- (1) 若曲线 f(x) 存在与y 轴垂直的切线,求a 的取值范围.
- (2) 当 $a \ge 1$ 时,证明: $f(x)...1 + x \frac{3}{2}x^2$.
- 19.(12 分)曲线 C_1 的参数方程为 $\begin{cases} x=1+\cos\alpha \\ y=\sin\alpha \end{cases}$ (α 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标
- 系,曲线 C_2 的极坐标方程为 $\rho \cos^2 \theta = 4 \sin \theta$.
- (1) 求曲线 C_1 的极坐标方程和曲线 C_2 的直角坐标方程;
- (2) 过原点且倾斜角为 $\alpha(\frac{\pi}{4} \le \alpha < \frac{\pi}{3})$ 的射线l 与曲线 C_1 , C_2 分别交于A,B 两点(异于原点),求 $|OA| \cdot |OB|$ 的取值范围.
- 20. (12 分) 已知函数 $f(x) = x^3 x^2 (a 16)x$, $g(x) = a \ln x$, $a \in R$.函数 $h(x) = \frac{f(x)}{x} g(x)$ 的导函数 h'(x) 在 $\left[\frac{5}{2}, 4\right]$ 上存在零点.
- (1) 求实数 a 的取值范围;
- (2) 若存在实数 a , 当 $x \in [0,b]$ 时,函数 f(x) 在 x = 0 时取得最大值,求正实数 b 的最大值;
- (3)若直线l与曲线y = f(x)和y = g(x)都相切,且l在y轴上的截距为-12,求实数a的值.
- 21. (12 分)在直角坐标系 xOy 中,曲线 C 的参数方程为 $\begin{cases} x=4\cos\alpha \\ y=2\sin\alpha \end{cases}$ (α 为参数),将曲线 C 上各点纵坐标伸长到

原来的 2 倍(横坐标不变)得到曲线 C_1 ,以坐标原点 O 为极点,x 轴正半轴为极轴,建立极坐标系,直线 l 的极坐标 方程为 $4\rho\cos\theta+3\rho\sin\theta-25=0$.

(1) 写出 C_1 的极坐标方程与直线l的直角坐标方程;

- (2)曲线 C_1 上是否存在不同的两点 $M\left(4,\theta_1\right)$, $N\left(4,\theta_2\right)$ (以上两点坐标均为极坐标, $0<\theta_1<2\pi$, $0<\theta_2<2\pi$), 使点 M 、 N 到 l 的距离都为 3?若存在,求 $|\theta_1-\theta_2|$ 的值;若不存在,请说明理由.
- 22. (10 分) 一种游戏的规则为抛掷一枚硬币,每次正面向上得 2 分,反面向上得 1 分.
- (1) 设抛掷 4 次的得分为 X , 求变量 X 的分布列和数学期望.
- (2) 当游戏得分为 $n(n \in \mathbb{N}^*)$ 时,游戏停止,记得n分的概率和为 $Q_n, Q_1 = \frac{1}{2}$.
- ①求 Q_2 ;
- ②当 $n \in \mathbb{N}^*$ 时,记 $A_n = Q_{n+1} + \frac{1}{2}Q_n$, $B_n = Q_{n+1} Q_n$,证明:数列 $\left\{A_n\right\}$ 为常数列,数列 $\left\{B_n\right\}$ 为等比数列.

参考答案

一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1 、 A

【解析】

设 $CA = CC_1 = 2CB = 2$,延长 $A_1B_1 \subseteq D$,使得 $A_1B_1 = B_1D$,连BD, C_1D ,可证 AB_1/BD ,得到 $\angle C_1BD$ (或补角)为所求的角,分别求出 BC_1 , AB_1 , C_1D ,解 VC_1BD 即可.

【详解】

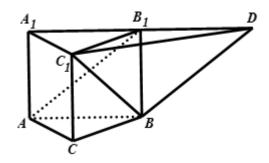
设 $CA = CC_1 = 2CB = 2$, 延长 $A_1B_1 \subseteq D$, 使得 $A_1B_1 = B_1D$,

连 BD_1C_1D , 在直三棱柱 $ABC - A_1B_1C_1$ 中, AB/A_1B_1 , $AB = A_1B_1$,

- $\therefore AB//B_1D, AB = B_1D$, 四边形 $ABDB_1$ 为平行四边形,
- $\therefore AB_1/BD$, $\therefore \angle C_1BD$ (或补角) 为直线 BC_1 与 AB_1 所成的角,

在
$$Rt\triangle BCC_1$$
中, $BC_1 = \sqrt{CC_1^2 + BC^2} = \sqrt{5}$,

在
$$Rt \triangle A_1 B_1 C_1$$
 中, $A_1 B_1 = \sqrt{A_1 C_1^2 + B_1 C_1^2} = \sqrt{5}$, $\cos \angle B_1 A_1 C_1 = \frac{2}{\sqrt{5}}$,


在 VA_1C_1D 中,

$$C_1D^2 = A_1C_1^2 + A_1D^2 - 2A_1C_1 \cdot A_1D\cos\angle B_1A_1C_1 = 4 + 20 - 16 = 8$$
 ,

在
$$Rt\Delta AA_1B_1$$
中, $AB_1 = \sqrt{AA_1^2 + A_1B_1^2} = 3$, $BD = AB_1 = 3$,

在VBC₁D中,cos∠C₁BD =
$$\frac{BC_1^2 + BD^2 - C_1D^2}{2BC_1 \cdot BD} = \frac{5 + 9 - 8}{6\sqrt{5}} = \frac{\sqrt{5}}{5}$$
.

故选: A.

【点睛】

本题考查异面直线所成的角,要注意几何法求空间角的步骤"做""证""算"缺一不可,属于中档题.

2, D

【解析】

因为0 < a < b < 1,所以 $1 > b^a > a^a > a^b > 0$,

因为
$$\log_b a > \log_b b > 1$$
, $0 < a < 1$,所以 $\frac{1}{a} > 1$, $\log_{\frac{1}{a}} b < 0$.

综上
$$\log_b a > b^a > a^b > \log_{\frac{1}{a}} b$$
; 故选 D.

3, B

【解析】

解对数不等式可得集合 A,由交集运算即可求解.

【详解】

集合
$$A = \{x \mid \log_2(x-1) < 2\}$$
,解得 $A = \{x \mid 1 < x < 5\}$,

$$B=N$$

由集合交集运算可得 $A \cap B = \{x | 1 < x < 5\} \cap N = \{2,3,4\}$,

故选: B.

【点睛】

本题考查了集合交集的简单运算,对数不等式解法,属于基础题.

4, D

【解析】

利用辅助角公式化简函数得到 $f(x) = \sqrt{2} \sin(2x - \frac{\pi}{4})$,再逐项判断正误得到答案.

【详解】

$$f(x) = \sin 2x - \cos 2x = \sqrt{2}\sin(2x - \frac{\pi}{4})$$

A 选项,
$$x \in \left(0, \frac{2\pi}{3}\right) \Rightarrow 2x - \frac{\pi}{4} \in \left(-\frac{\pi}{4}, \frac{13\pi}{12}\right)$$
函数先增后减,错误

B 选项,
$$x = \frac{\pi}{8} \Rightarrow 2x - \frac{\pi}{4} = 0$$
 不是函数对称轴,错误

$$\mathbb{C}$$
 选项, $x = \frac{\pi}{4} \Rightarrow 2x - \frac{\pi}{4} = \frac{\pi}{4}$, 不是对称中心,错误

D 选项,图象向左平移需
$$\frac{\pi}{8}$$
个单位得到 $y = \sqrt{2}\sin(2(x + \frac{\pi}{8}) - \frac{\pi}{4}) = \sqrt{2}\sin 2x$,正确

故答案选 D

【点睛】

本题考查了三角函数的单调性,对称轴,对称中心,平移,意在考查学生对于三角函数性质的综合应用,其中化简三角函数是解题的关键。

5, A

【解析】

对复数z进行乘法运算,并计算得到z=4+2i,从而得到虚部为2.

【详解】

因为z = (1+i)(3-i) = 4+2i, 所以z 的虚部为2.

【点睛】

本题考查复数的四则运算及虚部的概念,计算过程要注意 $i^2 = -1$.

6, C

【解析】

根据函数的奇偶性得 $a = f(-2^{\frac{3}{2}}) = f(2^{\frac{3}{2}})$,再比较 $\sqrt{5}, 2^{\frac{3}{2}}, \log_2 9$ 的大小,根据函数的单调性可得选项.

【详解】

依題意得
$$a = f(-2^{\frac{3}{2}}) = f(2^{\frac{3}{2}})$$
,Q $\sqrt{5} < \sqrt{8} = 2\sqrt{2} = 2^{\frac{3}{2}} < 3 = \log_2 8 < \log_2 9$,

当 $x \ge 0$ 时, $f(x) = e^x + x$,因为 e > 1,所以 $y = e^x$ 在 R 上单调递增,又 y = x 在 R 上单调递增,所以 f(x) 在 $[0, +\infty)$

上单调递增,

∴
$$f(\log_2 9) > f(2^{\frac{3}{2}}) > f(\sqrt{5})$$
, $\text{the } b > a > c$,

故选: C.

【点睛】

本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题.

7, A

【解析】

利用 $P = \frac{n_A}{n}$ 计算即可,其中 n_A 表示事件 A 所包含的基本事件个数, n 为基本事件总数.

【详解】

从 7 本作业本中任取两本共有 C_7^2 种不同的结果,其中,小明取到的均是自己的作业本有 C_3^2 种不同结果,

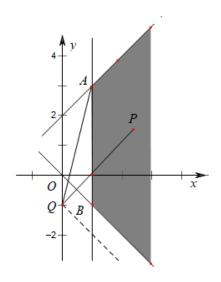
由古典概型的概率计算公式,小明取到的均是自己的作业本的概率为 $\frac{C_3^2}{C_7^2} = \frac{1}{7}$.

故选: A.

【点睛】

本题考查古典概型的概率计算问题,考查学生的基本运算能力,是一道基础题。

8, B


【解析】

作出可行域, $\frac{y+1}{x}$ 表示可行域内点 P(x,y) 与定点 Q(0,-1) 连线斜率,观察可行域可得最小值.

【详解】

作出可行域,如图阴影部分(含边界), $\frac{y+1}{x}$ 表示可行域内点 P(x,y) 与定点 Q(0,-1) 连线斜率, A(1,3) , $k_{QA} = \frac{3-(-1)}{1-0} = 4$,过Q 与直线 x+y=0 平行的直线斜率为-1 , $x-1 < k_{PQ} \le 4$.

故选: B.

【点睛】

本题考查简单的非线性规划. 解题关键是理解非线性目标函数的几何意义,本题 $\frac{y+1}{x}$ 表示动点 P(x,y) 与定点 Q(0,-1) 连线斜率,由直线与可行域的关系可得结论.

9, C

【解析】

$$\diamondsuit 2x - \frac{\pi}{6} = \frac{\pi}{2} + k\pi \left(k \in Z \right)$$
,求出在 $\left[0, \frac{13}{3} \pi \right]$ 的对称轴,由三角函数的对称性可得

 $x_1 + x_2 = \frac{\pi}{3} \times 2, x_2 + x_3 = \frac{5\pi}{6} \times 2, \dots, x_{n-1} + x_n = \frac{23\pi}{6} \times 2$,将式子相加并整理即可求得 $x_1 + 2x_2 + 2x_3 + \dots + 2x_{n-1} + x_n$ 的值.

【详解】

函数周期 $T = \pi$,令 $\frac{1}{2}k\pi + \frac{\pi}{3} = \frac{13}{3}\pi$,可得 k = 8 .则函数在 $x \in \left[0, \frac{13}{3}\pi\right]$ 上有 8 条对称轴.

根据正弦函数的性质可知 $x_1 + x_2 = \frac{\pi}{3} \times 2, x_2 + x_3 = \frac{5\pi}{6} \times 2, ..., x_{n-1} + x_n = \frac{23\pi}{6} \times 2$,

将以上各式相加得:
$$x_1 + 2x_2 + 2x_3 + \ldots + 2x_{n-1} + x_n = \left(\frac{2\pi}{6} + \frac{5\pi}{6} + \frac{8\pi}{6} + \ldots + \frac{23\pi}{6}\right) \times 2 = \frac{\pi}{3} \times \frac{(2+23)\times 8}{2} = \frac{100\pi}{3}$$

故选:C.

【点腈】

本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为 $x_1 + x_2 + x_3 + x_3 + x_4 + \ldots + x_{n-1} + x_n$ 的形式.

10, B

【解析】

先利用向量坐标运算求出向量2m+n,然后利用向量平行的条件判断即可.

【详解】

$$Q_{m} = (0, -2), n = (\sqrt{3}, 1)$$

$$\therefore 2m + n = (\sqrt{3}, -3)$$

$$\left(-1,\sqrt{3}\right) = -\frac{\sqrt{3}}{3}\left(\sqrt{3},-3\right)$$

故选 B

【点睛】

本题考查向量的坐标运算和向量平行的判定,属于基础题,在解题中要注意横坐标与横坐标对应,纵坐标与纵坐标对应,切不可错位.

11, D

【解析】

设羊户赔粮 a_1 升,马户赔粮 a_2 升,牛户赔粮 a_3 升,易知 a_1,a_2,a_3 成等比数列, $q=2,a_1+a_2+a_3=50$,结合等比数列的性质可求出答案.

【详解】

设羊户赔粮 a_1 升,马户赔粮 a_2 升,牛户赔粮 a_3 升,则 a_1,a_2,a_3 成等比数列,且公比 $q=2,a_1+a_2+a_3=50$,则

$$a_1(1+q+q^2)=50$$
, the $a_1=\frac{50}{1+2+2^2}=\frac{50}{7}$, $a_2=2a_1=\frac{100}{7}$, $a_3=2^2a_1=\frac{200}{7}$.

故选:D.

【点睛】

本题考查数列与数学文化、考查了等比数列的性质、考查了学生的运算求解能力、属于基础题、

12, C

【解析】

采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果.

【详解】

A 错误

由EF 二平面AEC, $BC_1//AD_1$

而 AD, 与平面 AEC 相交,

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/035200313112011131