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. On pages 51–53 of his lost notebook, S. Ramanujan ex-
pressed several integrals of products of Dedekind eta-functions in terms
of incomplete elliptic integrals of the first kind. In this paper, we prove
these identities using only results found in Ramanujan’s notebooks. We
then construct several new elliptic integrals of this type using modular
identities associated with certain “Hauptmoduls.”

1. Introduction

On pages 51–53 in his lost notebook [17], Ramanujan recorded several
identities involving integrals of theta-functions and incomplete elliptic inte-
grals of the first kind. We offer here one typical example, proved in Theorem
7.5 below. Let (in Ramanujan’s notation) f(−q) = (q; q)∞. (Detailed no-
tation is given in Section 2. The function f is essentially the Dedekind
eta-function; see (2.4).) Let

(1.1) v := v(q) := q
f3(−q)f3(−q15)
f3(−q3)f3(−q5)

.

Then
(1.2)∫ q

0
f(−t)f(−t3)f(−t5)f(−t15)dt =

1
5

∫ 2 tan−1(1/
√

5)

2 tan−1

�
1√
5

r
1−11v−v2

1+v−v2

� dϕ√
1− 9

25 sin2 ϕ
.

The reader will immediately realize that these are rather uncommon inte-
grals. Indeed, we have never seen identities like (1.2) in the literature.

In a wonderful paper [13], all of these integral identities were proved by
S. Raghavan and S. S. Rangachari. However, in almost all of their proofs,
they used results with which Ramanujan would have been unfamiliar. In
particular, they relied heavily on results from the theory of modular forms,
evidently not known to Ramanujan. For example, for four identities, in-
cluding (1.2), Raghavan and Rangachari appealed to differential equations
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satisfied by certain ients of eta-functions, such as (1.1), which can be
found in R. Fricke’s text [9].

In an effort to discern Ramanujan’s methods and to better understand
the origins of identities like (1.2), the present authors have devised proofs

t of the theory of modular forms and other ideas with which
Ramanujan would have been unfamiliar. In particular, we have relied exclu-
sively on results found in his ordinary notebooks [15] and his lost notebook
[17]. It should be emphasized that at the time of the publication of Ragha-
van and Rangachari’s paper [13] a decade ago, many of these results had not
yet been proved. Particularly troublesome for us were the aforementioned
four differential equations for ients of eta-functions. To prove these,
we used identities for Eisenstein series found in Chapter 21 of Ramanujan’s
second notebook and several eta-function identities scattered among the un-
organized pages of his second notebook [2, Chap. 25]. We have also utilized
several results in the lost notebook found on pages in close proximity to the
elliptic integral identities.

The authors owe a huge debt to Raghavan and Rangachari’s paper [13].
In many cases, we have incorporated large portions of their proofs, while
in other instances we have employed different lines of attack. This paper
could have been made shorter by referring to their paper for large portions
of certain proofs, but considerable readability would have been lost in doing
so.

In Section 3, we prove two identities for integrals of theta-functions of
forms unlike (1.2). The first proof is virtually the same as that given by
Raghavan and Rangachari, while the latter proof is completely different. In
Sections 4–6, we prove several integral identities associated with modular
equations of degree 5. Here some transformations of incomplete elliptic
integrals due to J. Landen and Ramanujan play key roles. In Section 7,
several identities of order 15 are established. Here two of the aforementioned
differential equations are crucial. Differential equations are also central in
Sections 8 and 9, where identities of orders 14 and 35, respectively, are
proved.

Since differential equations for ients of eta-functions are of such para-
mount importance in proving identities akin to (1.2), we have systematically
derived several new differential equations for eta-function ients in Sec-
tion 10. We have used two of these new differential equations to derive two
new formulas in the spirit of (1.2). In Section 10, we also point out the
connection of such integrals with elliptic curves. We plan to return to these
matters in a future paper.
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2. Preliminary Results

As usual, set, for each nonnegative integer n,

(a; q)n =
n−1∏

k=0

(1− aqk)

and
(a; q)∞ = lim

n→∞(a; q)n, |q| < 1.

Ramanujan’s general theta-function f(a, b) is defined by

f(a, b) =
∞∑

n=−∞
an(n+1)/2bn(n−1)/2, |ab| < 1.

Theta-functions satisfy the very important and useful Jacobi triple product
identity [1, p. 35, Entry 19],

(2.1) f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

The most important special cases are given by

ϕ(q) :=f(q, q) =
∞∑

n=−∞
qn2

=
(−q; q2)∞(q2; q2)∞
(−q2; q2)∞(q; q2)∞

,(2.2)

ψ(q) :=f(q, q3) =
∞∑

n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

,(2.3)

and

f(−q) :=f(−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q; q)∞

= : e−2πiz/24η(z), q = e2πiz, Im z > 0.(2.4)

The product representations in (2.2)–(2.4) are instances of the Jacobi
triple product identity (2.1). The function η(z), defined in (2.4), is the
Dedekind eta-function. It has the transfomation formula

(2.5) η(−1/z) =
√

z/iη(z).

The functions ϕ,ψ, and f in (2.2)–(2.4) can be expressed in terms of
the modulus k and the hypergeometric function z := 2F1(1

2 , 1
2 ; 1; k2). For a

catalogue of formulas of this type, see [1, pp. 122–124]. We will need two
such formulas in the sequel. If α = k2 and

q = exp

(
2F1(1

2 , 1
2 ; 1; 1− α)

2F1(1
2 , 1

2 ; 1;α)

)
,

then

(2.6) ψ(−q) =
√

1
2z {α(1− α)/q}1/8
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and

(2.7) f(−q2) =
√

z2−1/3 {α(1− α)/q}1/12 .

The Eisenstein series P (q), Q(q), and R(q) are defined by

P (q) :=1− 24
∞∑

n=1

nqn

1− qn
,(2.8)

=1 + 240
∞∑

n=1

n3qn

1− qn
,(2.9)

and

R(q) :=1− 504
∞∑

n=1

n5qn

1− qn
.(2.10)

(This is the notation used by Ramanujan in his lost notebook and paper [14],
[16, pp. 136–162], but in his ordinary notebooks, P, Q, and R are replaced
by L, M, and N, respectively.)

The Rogers–Ramanujan fraction u(q) is defined by

(2.11) u := u(q) :=
q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · · , |q| < 1.

With f(−q) defined by (2.4), two of the most important properties of u(q)
are given by [1, p. 267, eqs. (11.5), (11.6)]

(2.12)
1

u(q)
− 1− u(q) =

f(−q1/5)
q1/5f(−q5)

and

(2.13)
1

u5(q)
− 11− u5(q) =

f6(−q)
qf6(−q5)

.

A common generalization of (2.12) and (2.13) was recorded by Ramanujan
in his lost notebook and proved by S. H. Son [18]. Lastly, it can be shown
that, with the use of the Rogers–Ramanujan identities [1, p. 79],

(2.14) u(q) = q1/5 (q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

.

3. Two Simpler Integrals

Theorem 3.1 (p. 51). Let P (q), Q(q), and R(q) be the Eisenstein series
defined by (2.8)–(2.10). Then

∫ q

e−2π

√
Q(t)

dt

t
= log

(
Q3/2(q)−R(q)
Q3/2(q) + R(q)

)
.
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Proof. Following Ramanujan’s suggestion, let z = R2(t)/Q3(t). Then

(3.1)
1
z

dz

dq
=

2
R

dR

dq
− 3

Q

dQ

dq
.

Using Ramanujan’s differential equations [14, eq. (30)], [17, p. 142], [1, p.
330]

q
dR

dq
=

PR −Q2

2
and q

dQ

dq
=

PQ−R

3
,

in (3.1), we find that

(3.2)
q

z

dz

dq
=

R2 −Q3

RQ
.

Hence, by (3.2),

q
d

dq
log

(
Q3/2 −R

Q3/2 + R

)
=q

d

dq
log

(
1−√

z

1 +
√

z

)

=q
d

dz
log

(
1−√

z

1 +
√

z

)
dz

dq

=
1√

z(z − 1)
q
dz

dq

=
√

Q.

It follows that
∫ q

e−2π

√
Q(t)

dt

t
=

∫ q

e−2π

d

dt
log

(
Q3/2 −R

Q3/2 + R

)
dt

= log

(
Q3/2(q)−R(q)
Q3/2(q) + R(q)

)
− log

(
Q3/2(e−2π)−R(e−2π)
Q3/2(e−2π) + R(e−2π)

)
.

But it is well-known that R(e−2π) = 0 [8, p. 88], and so Theorem 3.1 follows.
¤

Theorem 3.2 (p. 53). Let u(q) denote the Rogers–Ramanujan
fraction, defined by (2.11), and set v = u(q2). Recall that ψ(q) is defined by
(2.3). Then

(3.3)
8
5

∫
ψ5(q)
ψ(q5)

dq

q
= log(u2v3) +

√
5 log

(
1 + (

√
5− 2)uv2

1− (
√

5 + 2)uv2

)
.

Proof. Let k := k(q) := uv2. Then from page 53 of Ramanujan’s lost note-
book [17], or from page 326 of his second notebook [3, pp. 12–13],

(3.4) u5 = k

(
1− k

1 + k

)2

and v5 = k2

(
1 + k

1− k

)
.
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(See also S.–Y. Kang’s paper [11].) It follows that

(3.5) log(u2v3) =
1
5

log
(

k8 1− k

1 + k

)
.

If we set ε = (
√

5+1)/2, we readily find that ε3 =
√

5+2 and ε−3 =
√

5−2.
Then, with the use of (3.5), we see that (3.3) is equivalent to the equality

(3.6)
8
5

∫
ψ5(q)
ψ(q5)

dq

q
=

1
5

log
(

k8 1− k

1 + k

)
+
√

5 log
(

1 + ε−3k

1− ε3k

)
.

Now from Entry 9(vi) in Chapter 19 of Ramanujan’s second notebook [1,
p. 258],

(3.7)
ψ5(q)
ψ(q5)

= 25q2ψ(q)ψ3(q5) + 1− 5q
d

dq
log

f(q2, q3)
f(q, q4)

.

By the Jacobi triple product identity (2.1),

f(q2, q3)
f(q, q4)

=
(−q2; q5)∞(−q3; q5)∞
(−q; q5)∞(−q4; q5)∞

=
(q; q5)∞(q4; q5)∞(q4; q10)∞(q6; q10)∞
(q2; q5)∞(q3; q5)∞(q2; q10)∞(q8; q10)∞

=q1/5 u(q)
v(q)

,(3.8)

by (2.14). Using (3.8) in (3.7), we find that

8
5

∫
ψ5(q)
ψ(q5)

dq

q
=40

∫
qψ(q)ψ3(q5)dq +

∫
8
5q

dq − 8
∫

d

dq
log

(
q1/5u/v

)
dq

=40
∫

qψ(q)ψ3(q5)dq − 8 log(u/v)

=40
∫

qψ(q)ψ3(q5)dq +
8
5

log k − 24
5

log
1− k

1 + k
,(3.9)

where (3.4) has been employed. Comparing (3.9) with (3.6), we now see
that it suffices to prove that

(3.10) 8
∫

qψ(q)ψ3(q5)dq = log
1− k

1 + k
+

1√
5

log
(

1 + ε−3k

1− ε3k

)
.

Upon differentiation of both sides of (3.10) and simplification, we find that
(3.10) is equivalent to

(3.11) qψ(q)ψ3(q5) =
k(q)k′(q)

(1− k2(q))(1− 4k(q)− k2(q))
.

We now prove (3.11). By (3.4) again,

(3.12)
v

u2
=

1 + k

1− k
.
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Taking the logarithmic derivative of both sides of (3.12), we find that

(3.13)
k′(q)

1− k2(q)
=

1
2

v′(q)
v(q)

− u′(q)
u(q)

.

By the logarithmic differentiation of (2.14),

u′(q)
u(q)

=
1
5q

−
∞∑

n=1

(n

5

) nqn−1

1− qn

and

v′(q)
v(q)

= 2

(
1
5q

−
∞∑

n=1

(n

5

) nq2n−1

1− q2n

)
,

where
(

n
5

)
denotes the Legendre symbol. Using these derivatives in (3.13),

we see that

(3.14)
k′(q)

1− k2(q)
=

∞∑

n=1

(n

5

) nqn−1

1− q2n
.

However, from Entry 8(i) in Chapter 19 of Ramanujan’s second notebook
[1, p. 249],

∞∑

n=1

(n

5

) nqn

1− q2n
= qψ3(q)ψ(q5)− 5q2ψ(q)ψ3(q5),

so that, by (3.14),

(3.15)
k′(q)

1− k2(q)
= ψ3(q)ψ(q5)− 5qψ(q)ψ3(q5).

From page 56 in Ramanujan’s lost notebook [17],

(3.16)
ψ2(q)

qψ2(q5)
=

1− k2(q)
k(q)

+ 1,

which has been proved by Kang [11, Thm. 4.2]. Putting (3.16) in (3.15), we
deduce that

(3.17)
k′(q)

1− k2(q)
=

(
1− k2(q)

k(q)
− 4

)
qψ(q)ψ3(q5).

It is easily seen that (3.17) is equivalent to (3.11), and so the proof of (3.3)
is complete. ¤
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4. Elliptic Integrals of Order 5 (I)

Theorem 4.1 (p. 52). With f(−q), ψ(q), and u(q) defined by (2.4), (2.3),
and (2.11), respectively, and with ε = (

√
5 + 1)/2,

53/4

∫ q

0

f2(−t)f2(−t5)√
t

dt =2
∫ π/2

cos−1((εu)5/2)

dϕ√
1− ε−55−3/2 sin2 ϕ

(4.1)

=
∫ 2 tan−1(53/4√qf3(−q5)/f3(−q))

0

dϕ√
1− ε−55−3/2 sin2 ϕ

(4.2)

=
√

5
∫ 2 tan−1(51/4√qψ(q5)/ψ(q))

0

dϕ√
1− ε5−1/2 sin2 ϕ

.(4.3)

To prove (4.1), we need the following lemma.

Lemma 4.2. Let u(q) be defined by (2.11). Then

u′(q) =
u(q)
5q

f5(−q)
f(−q5)

.

Proof. By (2.14) and the Jacobi triple product identity (2.1),

u(q) = q1/5 (q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

= q1/5 f(−q,−q4)
f(−q2,−q3)

.

By logarithmic differentiation and the use of Entry 9(v) in Chapter 19 of
Ramanujan’s second notebook [1, p. 258],

u′(q)
u(q)

=
1
5q

+
d

dq
log

f(−q,−q4)
f(−q2,−q3)

=
1
5q

+
1
5q

(
−1 +

f5(−q)
f(−q5)

)
=

1
5q

f5(−q)
f(−q5)

,

which completes the proof. ¤

Proof of (4.1). Let

(4.4) cos2 ϕ = ε5u5(t).

If t = 0, then ϕ = π/2; if t = q, then ϕ = cos−1
(
(εu)5/2

)
. Upon differentia-

tion and the use of Lemma 4.2,

2 cos ϕ(− sinϕ)
dϕ

dt
=5ε5u4(t)u′(t)

=ε5
u5(t)

t

f5(−t)
f(−t5)

= cos2 ϕ
f5(−t)
tf(−t5)

.(4.5)
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Hence, by (4.5), (2.13), and (4.4),

53/4

∫ q

0

f2(−t)f2(−t5)√
t

dt

=53/4

∫ cos−1((εu)5/2)

π/2

f2(−t)f2(−t5)√
t

−2tf(−t5)
f5(−t)

sinϕ

cosϕ
dϕ

=2 · 53/4

∫ π/2

cos−1((εu)5/2)

√
t
f3(−t5)
f3(−t)

sinϕ

cosϕ
dϕ

=2 · 53/4

∫ π/2

cos−1((εu)5/2)

1√
1/u5(t)− 11− u5(t)

sinϕ

cosϕ
dϕ

=2 · 53/4

∫ π/2

cos−1((εu)5/2)

sinϕ√
ε5 − 11 cos2 ϕ− ε−5 cos4 ϕ

dϕ.(4.6)

Since ε±5 = (5
√

5± 11)/2,

ε5 − 11 cos2 ϕ− ε−5 cos4 ϕ =ε5 − 11(1− sin2 ϕ)− ε−5 cos4 ϕ

=ε−5 + 11 sin2 ϕ− ε−5 cos4 ϕ

=ε−5(1− cos2 ϕ)(1 + cos2 ϕ) + 11 sin2 ϕ

=ε−5 sin2 ϕ(2− sin2 ϕ) + 11 sin2 ϕ

=sin2 ϕ(2ε−5 + 11− ε−5 sin2 ϕ)

= sin2 ϕ(5
√

5− ε−5 sin2 ϕ)

=5
√

5 sin2 ϕ(1− ε−55−3/2 sin2 ϕ).

Thus, from (4.6),

53/4

∫ q

0

f2(−t)f2(−t5)√
t

dt = 2
∫ π/2

cos−1((εu)5/2)

dϕ√
1− ε−55−3/2 sin2 ϕ

,

which is (4.1). ¤

To prove (4.2), we need two transformations for incomplete elliptic inte-
grals found in Chapter 17 of Ramanujan’s second notebook [1, pp. 105–106,
Entries 7(ii), (vi)].

Lemma 4.3. If tan γ =
√

1− x tanα, then

(4.7)
∫ α

0

dϕ√
1− x sin2 ϕ

=
∫ γ

0

dϕ√
1− x cos2 ϕ

.

If cotα tan(β/2) =
√

1− x sin2 α, then

(4.8) 2
∫ α

0

dϕ√
1− x sin2 ϕ

=
∫ β

0

dϕ√
1− x sin2 ϕ

.
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Proof of (4.2). In (4.7), replace ϕ by π/2 − ϕ and combine the result with
(4.8) to deduce that

(4.9)
∫ β

0

dϕ√
1− x sin2 ϕ

= 2
∫ π/2

π/2−γ

dϕ√
1− x sin2 ϕ

,

provided that
(i) cotα tan(β/2) =

√
1− x sin2 α,

(ii) tan γ =
√

1− x tanα.

Examining (4.1) and (4.2), we see that we want to set x = ε−55−3/2 and
γ = π

2 − cos−1
(
(εu)5/2

)
. We also see that, to prove (4.2), we will need to

show that (i) and (ii) imply that

(4.10) β = 2 tan−1
(
53/4√qf3(−q5)/f3(−q)

)
.

Since ε±5 = (5
√

5± 11)/2, a short calculation gives

1− ε−55−3/2 = ε55−3/2.

Thus, from (ii) and elementary trigonometry,

tanα =
1√

1− ε−55−3/2
cot

(
cos−1(εu)5/2

)

=ε−5/253/4 (εu)5/2

√
1− (εu)5

=
53/4u5/2

√
1− (εu)5

.(4.11)

Thus, by (i),

(4.12) tan(β/2) =
√

1− ε−55−3/2 sin2 α
53/4u5/2

√
1− (εu)5

.

From (4.11) and elementary trigonometry,

x sin2 α =
ε−5u5

1 + ε−5u5
.

Using this in (4.12), we deduce that

tan(β/2) =

√
1− ε−5u5

1 + ε−5u5

53/4u5/2

√
1− (εu)5

=
53/4u5/2

√
(1 + ε−5u5)(1− ε5u5)

=
53/4u5/2

√
1− 11u5 − u10

=
53/4

√
1/u5 − 11− u5

=53/4√qf3(−q5)/f3(−q),
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by (2.13). Clearly, the last equality is equivalent to (4.10), and so the proof
of (4.2) is complete. ¤

For the proof of (4.3), we need another transformation for incomplete
elliptic integrals.

Lemma 4.4. If 0 < p < 1 and

(4.13) tan
(

1
2

(A−B)
)

=
1− p

1 + 2p
tanB,

then

(1 + 2p)
∫ A

0

dϕ√
1− p3

(
2+p
1+2p

)
sin2 ϕ

= 3
∫ B

0

dϕ√
1− p

(
2+p
1+2p

)3
sin2 ϕ

.

This lemma is Entry 6(iv) in Chapter 19 in Ramanujan’s second notebook
and is a consequence of a Theorem of Jacobi; see [1, pp. 238–241] for a proof.

Proof of (4.3). We apply Lemma 4.4 with

p =
1

ε2
√

5
,

where ε = (
√

5 + 1)/2. Then

(4.14) 1 + 2p =
3√
5

and 2 + p =
3ε√
5
,

and so

p3

(
2 + p

1 + 2p

)
= ε−55−3/2 and p

(
2 + p

1 + 2p

)3

=
ε√
5
.

If we substitute these quantities in Lemma 4.4, and if we set

(4.15) A = 2 tan−1
(
53/4√qf3(−q5)/f3(−q)

)

and

(4.16) B = 2 tan−1
(
51/4√qψ(q5)/ψ(q)

)
,

we shall be finished with the proof of (4.3) if we can prove (4.13).
Using the subtraction formula for the tangent function, (4.15), and (4.16),

we deduce that

(4.17) tan
(

1
2

(A−B)
)

=
53/4√qf3(−q5)/f3(−q)− 51/4√qψ(q5)/ψ(q)

1 + 5q
f3(−q5)ψ(q5)
f3(−q)ψ(q)

.

It will be convenient to use some results from the lost notebook proved by
Kang [10]. Set

(4.18) t = q1/6 (−q5; q5)∞
(−q; q)∞

and s =
ϕ(−q)
ϕ(−q5)

,
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where ϕ(q) is defined by (2.2). Then

(4.19)
f(−q)

q1/6f(−q5)
=

s

t
and

ψ(q)√
qψ(q5)

=
s

t3
.

Employing (4.19) in (4.17), we readily deduce that

(4.20) 5−1/4 tan
(

1
2

(A−B)
)

=
√

5t3s− t3s3

s4 + 5t6
.

Next, a simple calculation shows that

(4.21) 1− p =
3

ε
√

5
.

Hence, by (4.14), (4.21), (4.16), and the double angle formula,

5−1/4 1− p

1 + 2p
tanB =5−1/4ε−1 tanB

=5−1/4ε−1 tan
(
2 tan−1

(
51/4√qψ(q5)/ψ(q)

))

=
2ε−1√qψ(q5)/ψ(q)

1−√
5 qψ2(q5)/ψ2(q)

=
2ε−1t3s

s2 −√
5 t6

.(4.22)

Comparing (4.20) and (4.22), in view of (4.13), we must prove that

2ε−1t3s

s2 −√
5 t6

=
√

5 t3s− t3s3

s4 + 5t6
.

After considerable simplification, the last equality is seen to be equivalent
to

(4.23) s4 + 5t6 = s2 + s2t6.

Now, from (4.18) and (2.3), we find that

t = t(q) =
q1/6ψ(q5)f(−q2)

ψ(q)f(−q10)
.

Replacing q by −q and employing (2.6) and (2.7), we find that

t6(−q) = −q

(
ψ(−q5)f(−q2)
ψ(−q)f(−q10)

)6

= −
(

β(1− β)
α(1− α)

)1/4

,

where β has degree 5 over α. On the other hand, from (4.18),

s(−q) =
ϕ(q)
ϕ(q5)

=:
√

m,

where m is the multiplier of degree 5. Hence, replacing q by −q in (4.23),
we see that this equality is equivalent to

(4.24) m2 − 5
(

β(1− β)
α(1− α)

)1/4

= m−m

(
β(1− β)
α(1− α)

)1/4

.
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Using formulas for m and 5/m given in Entry 13(xii) of Chapter 19 in
Ramanujan’s second notebook [1, pp. 281–282], namely,

m =
(

β

α

)1/4

+
(

1− β

1− α

)1/4

−
(

β(1− β)
α(1− α)

)1/4

and

5
m

=
(

α

β

)1/4

+
(

1− α

1− β

)1/4

−
(

α(1− α)
β(1− β)

)1/4

,

we may easily verify that (4.24) does hold to complete the proof. ¤

5. Elliptic Integrals of Order 5 (II)

Theorem 5.1 (p. 52). As before, let ε = (
√

5+1)/2, and let u(q) and f(−q)
be defined by (2.11) and (2.4), respectively. Then

5−3/4

∫ q

0

f5(−t)√
f(−t1/5)f(−t5)

dt

t9/10
= 2

∫ π/2

cos−1(√εu)

dϕ√
1− ε−15−1/2 sin2 ϕ

(5.1)

=
∫ 2 tan−1

�
51/4q1/10

√
f(−q5)/f(−q1/5)

�
0

dϕ√
1− ε−15−1/2 sin2 ϕ

(5.2)

(5.3)

=
1√
5

∫ 2 tan−1

�
53/4q1/10

�
f(−q1/5)+q1/5f(−q5)

f(−q1/5)+5q1/5f(−q5)

�r
f(−q5)

f(−q1/5)

�
0

dϕ√
1− ε55−3/2 sin2 ϕ

.

Proof of (5.1). Let

(5.4) cos2 ϕ = εu(t).

Thus, if t = 0, then ϕ = π/2; if t = q, then ϕ = cos−1 (
√

εu) . Upon
differentiation and the use of Lemma 4.2,

(5.5) 2 cosϕ(− sinϕ)
dϕ

dt
= εu′(t) = ε

u(t)
5t

f5(−t)
f(−t5)

.
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Therefore, by (5.5), (2.12), and (5.4),

5−3/4

∫ q

0

f5(−t)√
f(−t1/5)f(−t5)

dt

t9/10

=2 · 51/4

∫ π/2

cos−1(√εu)

√
t1/5f(−t5)
f(−t1/5)

sinϕ cosϕ

εu(t)
dϕ

=2 · 51/4

∫ π/2

cos−1(√εu)

1√
1/u(t)− 1− u(t)

sinϕ

cosϕ
dϕ

=2 · 51/4

∫ π/2

cos−1(√εu)

sinϕ√
ε− cos2 ϕ− ε−1 cos4 ϕ

dϕ.(5.6)

Now,

ε− cos2 ϕ− ε−1 cos4 ϕ =ε− (1− sin2 ϕ)− ε−1 cos4 ϕ

=ε−1 + sin2 ϕ− ε−1 cos4 ϕ

=ε−1(1− cos2 ϕ)(1 + cos2 ϕ) + sin2 ϕ

=ε−1 sin2 ϕ(2− sin2 ϕ) + sin2 ϕ

= sin2 ϕ(2ε−1 − ε−1 sin2 ϕ + 1)

= sin2 ϕ(
√

5− ε−1 sin2 ϕ).

Using this calculation in (5.6), we find that

5−3/4

∫ q

0

f5(−t)√
f(−t1/5)f(−t5)

dt

t9/10
= 2 · 51/4

∫ π/2

cos−1(√εu)

dϕ√√
5− ε−1 sin2 ϕ

,

from which (5.1) is immediate. ¤
Proof of (5.2). The proof is similar to that of (4.2). We begin with (4.9),
set x = ε−15−1/2, and put γ = π

2 − cos−1 (
√

εu) . Thus,

(5.7) tan γ = cot
(
cos−1

(√
εu

))
=

√
εu

1− εu
.

As with the proof of (4.2), we want to show that conditions (i) and (ii) imply
that

(5.8) β = 2 tan−1

(
51/4q1/10

√
f(−q5)/f(−q1/5)

)
.

From condition (ii) and (5.7),

(5.9) tanα =
tan γ√

1− ε−15−1/2
=

√ √
5 u

1− εu

and

(5.10) sin2 α =
tan2 α

1 + tan2 α
=

√
5 u

1 + ε−1u
.
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