## 群的概念



■ 定义 设G是一个非空集合, "\*"是G是上的一个代数运算, 即

对所有的a, b  $\in$  G, 有a\*b  $\in$  G.

如果G的运算还满足:

- (G1) 结合律:即对所有的a, b, c∈G, 有 (a\*b)\*c=a\*(b\*c)
- (G2) G中存在元素e, 使得对每个a∈G, 有 e\*a=a\*e=a
- (G3) 对G中每个元素a, 存在元素b∈G, 使得 a\*b=b\*a=e.

则称G关于运算"\*"构成一个群(group), 记为(G, \*).



- 注1: (G2)中的元素e 称为群G的单位元(unit element)或恒等元(identity). 群G的单位元是唯一的.
- 注2: (G3)中的元素b称为元素a的逆元(inverse). 元素a的逆元是唯一的,记为a-1. 即有a\*a-1=a-1\*a=e

# 有限群

交換群

如果群G的运算还满足:

(G4) 交换律:即对所有的a, b∈G, 有a\*b=b\*a.

则称G是一个交换群(commutative group),或阿贝尔群 (abelian group).

- G中元素的个数称为群G的阶(order), 记为 G . 如果 G 是有限数,则称G是有限群(finite group), 否则称G是无限群(infinite group).
- 例:整数加群(Z,+);有理数加群(Q,+);实数加群(R,+); 数加群(C,+).
- 令Q\*=Q-{0}, (Q\*, ×)是群; {Q=Q q>0}, (Q , ×)是群; {q=Q q>0}, (Q , ×)是群.



#### 群的概念

例1 设 $G=\{1, -1, i, -i\}, 则(G, \times)$  是一个有换

| 元素a   | 1 | -1 | i  | -i |
|-------|---|----|----|----|
| 逆元a-1 | 1 | -1 | -i | i  |



- 例2 设m∈Z+, Zm={0,1,…, m-1}, 则(Z, ⊕)
   一个有限交换群. 称为模m剩余类加群.
- ✓ 单位元是e=0; a ∈ Z<sub>n</sub> 的逆元a-1= m-a.
- ✓ 特别地: 取m=5, 有 $Z = \{0, 1, 2, 3, 4\}$ ,

| 元素a   | 0 | 1 | 2 | 3 | 4 |
|-------|---|---|---|---|---|
| 逆元a-1 | 0 | 4 | 3 | 2 | 1 |



- 有时把交换群(G, \*)记为(G, +), 称为"群".
- · 把运算"\*"称为"加"法,运算结果记:
- / 弹短光粉, 那. 沙>>> 是b的"惩劣";
- ✓ a G的逆元称为G的负元,记为: "- a", 有a+(-a)= 0.



#### ■ 例1

$$G=\{1, -1, i, -i\}, (G, *)是一个有限交流可记为: (G, *)= (G, +), 运算式为: 1+(-1)=-1, 1+i=i, 1+(-i)=-i, (-1)+i=-i (-1)+(-i)=-i, (-1)+(-i)=-i,$$

试求 (-i)+(-i), i+i, (-1)+(-1).



■ 例2 加群: (Z,⊕)=(Z,+), 基中Z ={0,1,2,3,4}.

| <u> </u> |   |   |   |   |   |  |  |  |
|----------|---|---|---|---|---|--|--|--|
| 元素X      |   | 1 | 2 | 3 | 4 |  |  |  |
| 负元-x     | 0 | 4 | 3 | 2 | 1 |  |  |  |



- 計群的概念
- ✓ 有时把群(G,\*)记为(G,·), 称为"乘群".
- ✓ 把运算"\*"称为"乘" 法, 运算结果记为: a\*b= a·b, 称为a与b的"积";
- ✓ 运算符号通常省略, 简记为: a\*b=a·b=ab. 单位元记为: e=1.



- 例3 设m∈Z+, Z<sub>m</sub>={0,1,..., m-1}, 则(Z<sub>m</sub>, ∞)不是 一个群.元素0无逆元! 0×?=1 找不到这样的元素!
- 例4 设m∈Z+是素数, Z<sub>m</sub>\*= {1,2,...,m-1}, 则 (Z<sub>m</sub>\*,⊗)是一个有限交换群.
   单位元: e=1; a∈Z<sub>m</sub>的逆元a-1: a×a-1=1 (mod m).



特别地:取m=5,有Z<sub>5</sub>\*={1,2,3,4},

- 1×1=1 mod 5 所以1的逆元素是1
- 求出其他元素的逆元素



# 元素a的逆元

| 元素a   | 1 | 2 | 3 | 4 |
|-------|---|---|---|---|
| 逆元a-1 | 1 | 3 | 2 | 4 |



#### 群的 幂

设(G, ·)是一个群, n与Za  $\in$  G的n次幂为:

$$a^n = a \cdot a \cdot \dots \cdot a (n \uparrow a)^+$$

$$a^0 = e$$
,  $a_n = (\bar{a}^1)$ 

指数法则: 设a,b ∈ G, n, m ∈ Z,则有

- (1)  $a \cdot a^{m} = a_{n+m}$ ;
- (2)  $^{\text{h}}a^{\text{m}}$
- (3) 如果壹是一个交换群,则(anb) n=ba

13

# 4

## 加群的倍数

设(G, +)是一个加群, n∈,Za∈G的n倍为:

$$na = a + a + ...$$
 $0a = 0, (-n) + a = (n - a).$ 

倍数法则: 设a,b∈G, n, m∈Z,则有

- (1) na +ma = (n+m) a;
- (2) m(na) = (nm)a;
- (3) n(a+b) = na+nb.



### 群元素的 阶

- ■设G是一个群, e是G的单位元, a∈G, 如身存在正整数r, 使得ā 否则称a是无限阶的。e,则称a是有限阶的,
- 如果a是有限阶的,则把满足ar=e的最小正整数r称为a的阶(order),记为ord a=r.
- 如果a是无限阶的,则记ord  $a = \infty$ .



计算群( $\mathbf{Z}_5$ \*, ⊗)每个元素的阶, $_5$   $\mathbf{Z}$ \*={1, 2, 3, 4}.

解:对于a=2,有

$$2^{1}=2$$
,  $2=2 \otimes 2=4$ ,  $2=2 \otimes 2 \otimes 2=8=3$ ,  $2^{4}=2 \otimes 2 \otimes 2 \otimes 2=16=1$ .

... ord 2=4.

下面,请求出各元素的阶



## 元素a的阶如下

| a   | 1 | 2 | 3 | 4 |
|-----|---|---|---|---|
| a的阶 | 1 | 4 | 4 | 2 |

例7 计算群( $\mathbf{Z}_{6}$ ,  $\oplus$ )每个元素的阶<sub>6</sub>  $\mathbf{Z} = \{0, 1, 2, 3, 4, 5\}$ 解:对于 $\mathbf{a}=2$ , 有

 $1 \times 2 = 2$ ,  $2 \times 2 = 2 \oplus 2 = 4$ ,  $3 \times 2 = 2 \oplus 2 \oplus 2 = 6 = 0$ .

 $\cdot$  ord 2=3.

| a     | 0 | 1 | 2 | 3 | 4 | 5 |
|-------|---|---|---|---|---|---|
| Ord a | 1 | 6 | 3 | 2 | 3 | 6 |



■ 设G是一个群,如果存在 $a \in G$ ,使得  $G = \{a^1, a^2, \dots\} = \langle a \rangle$ ,

则称G是一个循环群(cyclic group), 并称a是的一个生成元(generator).

■ 如果G是一个n阶循环群,则

$$G=\{a_1, a_2, \cdots, a_n\}=\langle a \rangle$$
.  
提示:计算**时请**从 $a_1$ 



- 如果G是一个n阶循环群,且元素a∈G的 阶= 群G的阶,则a是G的一个生成元.
- 例8 设 $\mathbf{m} \in \mathbb{Z}$ ,  $\mathbf{Z} = \{0, 1, \dots, \mathbf{m} 1\}$ , $\mathbf{m} \in \mathbb{Z}$ , 是 $\mathbf{m}$  是 $\mathbf{m}$  你看环群⊕)是一个生成元.



■ 特别地: 取m=6,  $Z = \{0, 1, 2, 3, 4, 5\}$  的生成元有: 5.

$$1 \times 5=5$$
,  $2 \times 5=10=4$ ,  $3 \times 5=15=3$ ,  $4 \times 5=20=2$ ,  $5 \times 5=25=1$ ,  $6 \times 5=30=0$ .

- $Z_6 = \{0, 1, 2, 3, 4, 5\} = \{6 \times 5, 5 \times 5, 4 \times 5, 3 \times 5, 1 \times 5\}.$
- ■注意:循环群的生成元不是唯一的!



- 循环群
  - 定理 设p是素数,则 $(Z_p \otimes)$ 是p-1阶循环群.
- Zp\*的生成元a称为Z的一个模p元根 (primitive root).



群(Z<sub>5</sub>\*, ∞)是4阶循环群,<sub>5</sub> Z \*={1,2,3,4}.
 成元有: 2, 3.
 解 对于a=2, 有

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: <a href="https://d.book118.com/036031220022010202">https://d.book118.com/036031220022010202</a>