重难点突破 教材重点实验汇总

目 录

空破 01	测定空气中氨气的含量:	ว
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	测水分气性乳气的含果。	/

突破 02 探究燃烧的条件 2

突破 03 质量守恒定律 3

突破 04 探究金属的锈蚀 3

突破 05 金属的冶炼 4

突破 06 粗盐中难溶性杂质的去除 4

突破 07 水的分解 4

突破 08 配制一定溶质质量分数的溶液 5

突破 09 过滤 6

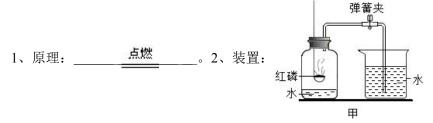
突破 10 金属活动性顺序的探究 6

突破 11 实验室制取氧气 6

突破 12 氧气的性质实验 7

突破 13 实验室制取二氧化碳 8

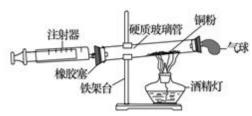
突破 14 二氧化碳的性质实验 9


突破 15 基本实验操作 9

突破 16 真题探究 11

突破 01 测定空气中氧气的含量

用红磷测定空气中氧气的含量


- 1、红磷要 ,如果红磷量 ,会导致氧气不能被耗尽,导致空气中氧气的含量 。
- 2、实验前要检查装置气密性,若装置漏气会导致实验结果____; 知识点:

- 3、步骤:连接装置,检查装置气密性;把集气瓶的容积分成_等份,做好记号;用止水夹夹紧胶管;在燃烧匙内放入____的红磷;点燃燃烧匙中的红磷,立即伸入集气瓶中,把塞子塞紧;待红磷熄灭并____后,打开止水阀。
- 4、现象:集气瓶中有大量的____生成,并放出热量;打开止水夹,烧杯中的水倒流到集气瓶中,并上升到约 处。
- 5、结论: 空气中的氧气含量大约是 ;

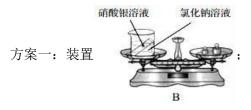
【视野拓展】用铜测定空气中氧气的含量


1、原理: ______。

- 2、装置:气球作用(缓冲压力防止_____出使氧气____)。
- 3、步骤:测硬质玻璃管的体积(记录),及注射器内气体体积;连接仪器加热,不断推拉注射器(目的:_____);停止加热,冷至室温后读数(不然,读数____,使氧气含量____)
- 4、现象:红色铜逐渐变成____,注射器内气体减少。
- 5、结论: 空气中的氧气含量大约是 ;

突破 02 探究燃烧的条件

燃烧的三个条件______才可以燃烧。因此,设计实验时要注意控制单一变量法,设计实验组和对照组。 知识点:



1,	实验现象:	①铜片上的白磷	_,发黄光	,放热,产生	。②)红磷。	③水下的白磷_	c
2,	实验结论:	通过实验现象 ①②	对比说明	月燃烧需要: _		•		
通	过实验现象	①③ 对比说明燃烧	需要:	o				
3、	小结燃烧的	的条件:①物质具有_	;	②可燃物跟_	充分接触;	③可燃物的	达到	_以上;
\equiv	者	才可以燃烧。						

突破 03 质量守恒定律

有气体____或___的实验必须在____容器里进行;否则如:有气体生成的实验没密闭,天平会不平衡(生成的_____);如:有气体参加的实验没密闭,天平会不平衡(没有称量______)。 知识点:

- 1、药品选择依据:药品能发生化学反应,且反应现象明显。
- 2、实验设计:

液体与液体反应,有固体生成; 敞口; 天平平衡; 能验证守恒定律。

固体与气体反应,有固体生成;密闭;天平平衡;能验证守恒定律。

实验结论:参加化学反应的各物质的_____等于反应后生成的各物质的____。

突破 04 探究金属的锈蚀

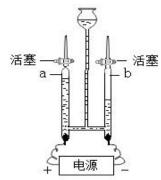
影响金属锈蚀的因素:铁的纯度、环境温度、氧气浓度和酸碱性等都是影响锈蚀的因素。因此,设计实验时要注意控制单一变量法,设计实验组和对照组。

知识点

- 1、铁生锈的条件是:铁与 __、__接触(铁锈的主要成分: _____)发生化学反应。
- 2、铁锈很_____,不能阻碍里层的铁继续与氧气、水蒸气反应,因此铁制品可以全部被锈蚀。因而铁锈应及时用稀盐酸或稀硫酸除去______。

突破 05 金属的冶炼

该实验要注意实验前和实验后的两个"先后"实验顺序。以及实验中尾气的处理。 知识点:


三靠: 烧杯口要紧靠_____, 玻璃棒要紧靠 _____, 漏斗的末端靠在_____

5、玻璃棒的作用:溶解: _____;过滤: ____;蒸发: _____

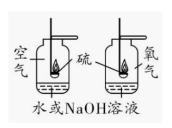
装置:
1、关于气体的实验,实验前必需对装置进行。这样操作的目的是防止。
2、实验开始时,先通入,然后再的原因是。
3、实验结束时的操作是"先,继续通,直到玻璃管"。这样操作的目的是
4、该实验的实验现象是硬质玻璃管中、试管中的、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、
管口处的。
5、相关反应的化学方程式: 高温 、、、、、 <u>点燃</u> 。
6、思考装置中导管末端点燃酒精灯:。
突破 06 粗盐中难溶性杂质的去除
1、实验仪器:、、、。
2、除去粗盐中的难溶性杂质的操作步骤是、、。
3、过滤:过滤是把固体和液体分离的一种方法,操作的要点是、、。
一贴:滤纸要,中间不要留有气泡;
二低:液面低于,滤纸边缘低于;

突破 07 水的分解

到指定的容器内。

二、用浓溶液配制稀溶液

电源
1、条件: (1) 通电; (2) 加入稀硫酸或氢氧化钠溶液(目的:增强水的,原因是它们可以形
成自由移动的)。
2、实验现象:通电后,两电极上都有大量的产生,液面,一段时间后,正极所产生的气体与负极
所产生的气体体积之比约为。
3、气体检验:
(1) 正极: 用的木条,带火星的木条,证明正极产生的气体是;
(2) 负极: 用木条,气体能燃烧,火焰呈,证明负极生成的气体是。
4、原理:(分解反应)。
5、结论:
(1) 水是由和组成的。
(2) 水在通电的条件下分解成氢气和氧气,并且它们的体积比是。
(3) 化学变化的本质:在化学反应中,分子分解成,而不可再分,原子又重新结合成新的。
6、能量变化: 由变成能。
突破 08 配制一定溶质质量分数的溶液
一、用固体药品配制溶液
1、实验仪器:、药匙、、、、、如口瓶。
2、实验步骤: (1); 需要食盐克; 需要水克; 即 42 毫升。
(2); 用托盘天平称取食盐 8g, 用量取 42 毫升水。
(3), 先将食盐放入烧杯中, 然后将量取的水加入, 并用不断搅拌。
(3); 先将食盐放入烧杯中,然后将量取的水加入,并用不断搅拌。 (4); 将配好的溶液放入试剂瓶中,注意标签(注明药品的名称和)向外。
(3); 先将食盐放入烧杯中,然后将量取的水加入,并用不断搅拌。 (4); 将配好的溶液放入试剂瓶中,注意标签(注明药品的名称和)向外。 3、误差分析: (1) 如果配制的溶液的溶质质量分数低于 16%,可能的原因是什么?取水; 砝码缺损;
(3); 先将食盐放入烧杯中,然后将量取的水加入,并用不断搅拌。 (4); 将配好的溶液放入试剂瓶中,注意标签(注明药品的名称和)向外。


(3) 对溶质质量分数没有影响?装瓶存放时洒了一些溶液;左物右码放反了,但_____等。

1、实验仪器:、、、、细口瓶。
2、实验步骤: (1): 所需 6%的氯化钠溶液———g(体积——ml),需加水——g
计算的依据:。
(2): 用量筒量取所需的 6%的氯化钠溶液(密度约为 1.04g/cm3),量取水,倒入烧杯中。
(3): 用玻璃棒搅拌使溶液混合均匀。
(4): 将配制好的溶液装入试剂瓶,并贴上标签。
突破 09 过滤
1、原理 : 分离的混合物,除去水中不溶性杂质;
2、仪器:漏斗、(作用)、烧杯、带铁圈铁架台;
3、步骤 : 一贴; 二低; 三靠; 一贴 :滤纸要紧贴, 否则过滤; 二低 :滤纸边缘要低于,
滤液边缘要低于,防止液体从,过滤失败; 三靠 :烧杯口要紧靠 <mark>玻璃棒</mark> ;玻璃棒要轻靠3
层滤纸;漏斗下端要紧靠 <mark>烧杯内壁</mark> (防止);
4、分析 ①过滤仍浑浊原因:滤纸;液面滤纸边缘;仪器。
②过滤速度慢原因:滤纸没有。
突破 10 金属活动性顺序的探究
1、实验前需要将金属进行打磨,目的是。
2、比较金属活动性时,需要注意在、控制变量法的应用,如酸溶液或盐溶液的温度、、体积,金属 1 、
知识点:
1、探究依据:在金属活动性顺序里:
(1)位于的金属能置换出盐酸、稀硫酸中的氢(不可用浓硫酸、硝酸)氢后的金属不与酸发生置换
反应。
(2)位于前面的金属能把位于后面的从它们的中置换出来。(除 K、Ca、Na)
2、实验方案设计
(1) 比较两种金属的活动性强弱:
方法一:将打磨过的金属分别插入等溶度的稀中,观察是否反应或反应的剧烈程度。
方法二:将打磨过的一种金属单质放入另一种金属的中,观察是否反应。
(2) 比较三种金属的活动性强弱:
方法一:两盐夹一金:将活动性排在中间的金属单质分别放入其它两种金属的中,观察现象。
方法二:两金夹一盐:将活动性最和最的金属单质放入活动性在中间的金属的盐溶液中,观察现象。
突破 11 实验室制取氧气
1、选药品的条件:必须含有。常用和二氧化锰;或加热或氯酸钾。
加,用讨氨化氢和二氨化锰制取氨气,

(1) 原理:;
(2) 装置:, 排水法(或向上排空法)。
(3) 步骤: 检查; 装药品(先固后液);
(4) 收集法:
①、排水法:原因氧气
②、向上排空气法:原因且不与空气反应;
(5) 验满: 向上排空气法,用带火星的木条放在,,木条则收集满。
(6)检验:用带火星的木条伸入,,木条则该气体是氧气。
(7) 注意事项: 向上排空气法收集气体时,导管口要接近集气(目的:)。
如: 用加热高锰酸钾或氯酸钾制取氧气:
(1) 原理:;
(2) 装置: 固固加热,(或向上排空法)
(3) 步骤: ^① 连接装置:, 从左到右的顺序; ②检查装置的; ③装入药品: 按粉末状固体
取用的方法; ④固定装置: 固定试管时,试管口应略倾斜,铁夹应夹在试管的; ⑤加热药品:
先,后在反应物部位用酒精灯加热;⑥收集气体;⑦先将,再停止。
(4) 收集法:
①、排水法:原因氧气
②、向上排空气法:原因密度比空气大且不与空气反应;
(5) 验满: 向上排空气法,用带火星的木条放在,, 木条复燃则收集满。
(6) 检验:用带火星的木条伸入,,木条复燃则该气体是氧气。
(7) 注意事项:
①试管口要略微倾斜:防止生成的,使试管破裂;②导气管伸入发生装置内要橡皮塞:有
利于产生的; ③用高锰酸钾制取氧气时,试管口塞: 防止高锰酸钾粉末; ④
实验结束后, 先将导气管移出水面,然后熄灭酒精灯: 防止水槽中的水, 炸裂。
容破 12 每与的性质实验

突破 12 氧气的性质实验

1、氧气与硫反应

原理: ____<u>_点燃__</u>__。

2、氧气与木炭反应;

原理: _____<u>点燃_</u>___。

现象:空气中:发____,放热,生成使澄清石灰水变浑浊的气体。氧气中:发____,放热,生成使澄清石灰水变浑浊的气体。

注意: 木炭伸入瓶中时,要自上而下,缓慢伸入(目的使木炭与氧气____)。

3、与铁丝反应;

收集二氧化碳; ⑥验满。

现象:空气中:变____,不燃烧;氧气中:剧烈燃烧,_____,放热,生产_____ 注意:铁丝用砂纸打磨(除去表面的_____); 在铁丝一端系一根火柴棒(____);铁丝绕成_____(预热未燃烧的的铁丝);在瓶底加_____或铺一层____(防止高温生成物使______);燃着的铁丝不能接触瓶壁(防止炸裂瓶壁)。

突破 13 实验室制取二氧化碳

(1) 药品:	或石灰石和	°	
(2) 原理:			;
(3) 装置:	固液不加热,	_,	
(4) 步骤:	①连接装置;②		;③向锥形瓶中加入;④从长颈漏斗加入;⑤

(6) 验满:向上排空气法,用燃着的木条放在,,木条则收集满。 (7) 检验:将气体通入,若石灰水,则是二氧化碳。原理:
(8) 注意事项:①长颈漏斗的下端要伸到(防止产生的气体从);②锥形瓶中的导管只能
导管只能
(9) 药品的选择: ①实验室制取二氧化碳不能用稀硫酸和大理石反应是因为(稀硫酸和大理石反应生成的
使制得的二氧化碳中混有
突破 14 二氧化碳的性质实验 1、二氧化碳与水反应: 原理:。 现象: 生成的碳酸可以使紫色石蕊试液,不是二氧化碳使石蕊变红的。
1、二氧化碳与水反应: 原理:。 现象: 生成的碳酸可以使紫色石蕊试液,不是二氧化碳使石蕊变红的。
原理:。 现象: 生成的碳酸可以使紫色石蕊试液, 不是二氧化碳使石蕊变红的。
现象: 生成的碳酸可以使紫色石蕊试液, 不是二氧化碳使石蕊变红的。
二氯化碳
二氯化碳
(I) 喷稀醋酸 (II) 喷水 (III) 直接放入二氧化碳中 (IV) 喷水后放入二氧化碳中
2、二氧化碳与石灰水反应:
原理:。
现象: 石灰水变浑浊; 用途:
突破 15 基本实验操作
一、实验室规则和仪器
1、实验三不: (1) 不能用手药品; (2) 不得任何药品的味道; (3) 不要把鼻孔去
闻气体的气味(应用手闻味)
2、剩余药品的处理: 三不一要: (1) 不能放回; (2) 不要随意; (3) 不要拿出; (4)
要放入指定的。
3、药品用量: (1) 严格按实验规定用量; (2) 未指明用量时,取用最少量:液体取;固体只需
4、加热仪器 _{ 可以直接加热的:、蒸发皿、、燃烧匙 {间接加热: 烧杯、、烧瓶。垫上(使仪器受热均匀,防止炸裂)

1、固体: (1) 块状固体: 用取,步骤: 一横、二放、三慢竖(防止打破)
1、固体: { (1) 块状固体: 用取,步骤: 一横、二放、三慢竖(防止打破) (2) 粉末状固体: 用或纸槽取,步骤: 一横、二放、三快竖
(1) 较多量:
步骤: 瓶塞、试管倾斜
大塚: 瓶基、试管倾斜 标签(防止瓶口残留药流下标签)
2、液体药品的取用: 瓶口挨着管口、盖上瓶塞放回原处
√(2) 较少量: 用
(2) 较少量: 用
【不能放在实验台上。
(3) 极少量:用蘸取(用PH试纸测定溶液PH值)
三、物质加热
1、酒精灯 (1) 火焰: 外焰、和(温度最高,温度最低,加热用)
(2) 二杏, 检查灯芯顶端是否平整或烧隹
检查灯座内酒精量不超过灯座容积的,不少于
(3) 三个: 崇正
止用嘴,熄灭时要用灯灭(盖两次)
(4)酒精灯打翻失火时,用盖灭
2、给液体加热: (1) 试管内液体不超过试管容积的;
(2) 试管夹夹在距试管口的 (从下向上套) (3) 用加热,移动试管或酒精灯预热(防止试管)
(3) 用加热,移动试管或酒精灯预热(防止试管)
(4) 试管不能(以免液体沸腾溅出伤人)
(5) 不要与灯芯接触(否则受热不均炸裂试管)
(1) 仪器连接顺序: 先下后上、
3、给固体加热: (2) 试管口应略倾斜(防止冷凝水倒流试管)
(3) 先, 再固定在有药品的部位加热。
四、物质的称量
1、固体(用托盘天平)(1)称准到。
(2)步骤: ①检查天平是否平衡(游码在处,若不平,调节)
②托盘上各放一张质量同的纸(易潮解的或有腐蚀性的药品放在里)
③左物右码(先加质量大的法码,再加质量小的法码)(物质量质量+质量)
《④称量完毕,法码回盒,游码回零。
⑤当称量未知质量的物体时,先加入物体后加码; 当准确称量一定质量的药品时,要先加砝

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/04504010020
2012004