

目

灵

- 引言
- 有限元静力学分析基础
- 有限元动力学分析基础
- 有限元分析中的关键技术
- 有限元分析的工程应用案例
- 结论与展望

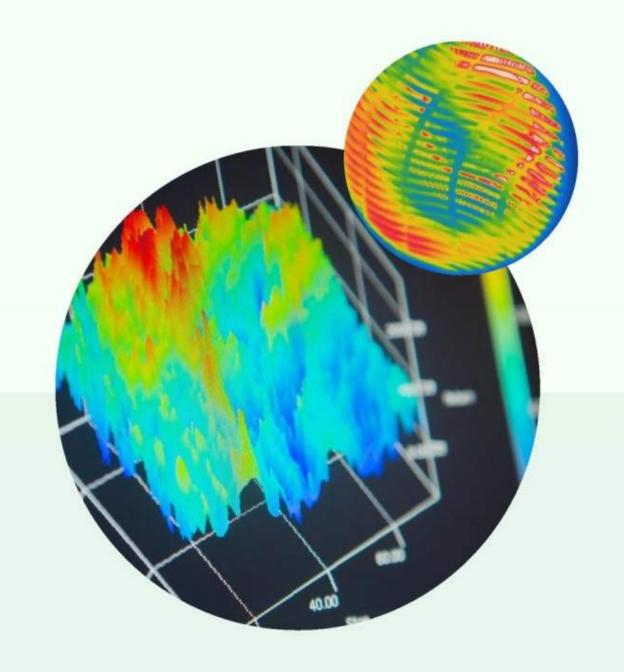
引言

有限元分析的定 义

有限元分析是一种数值分析方法,通过将连续的物理系统离散化为有限个小的单元,利用数学模型描述各单元之间的相互作用关系,从而对复杂的物理系统进行数值模拟和分析。

它广泛应用于工程领域,如结构分析、流体动力学、电磁场、声学等,为复杂问题的解决提供了有效的工具。

有限元分析的重要性


有限元分析能够解决许多实际工程问题,如结构 优化、疲劳寿命预测、振动控制等。

它能够模拟真实世界的物理现象,提供定量的结果,帮助工程师更好地理解系统的性能和行为。

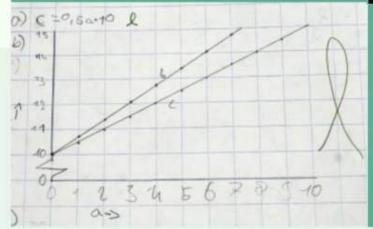
通过有限元分析,可以减少实验和物理模型的依赖,降低研发成本,缩短产品开发周期。

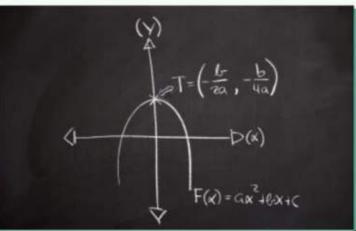
有限元分析的历史与发展

有限元分析的思想起源于20世纪40年代,但直到20世纪60年代 才由Clough提出并命名为"有限元法"。

随着计算机技术的发展,有限元分析得到了广泛的应用和推广,逐渐成为工程领域的重要工具。

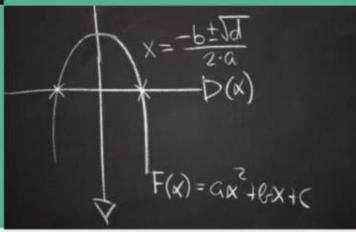
近年来,随着计算能力的提高和数值算法的发展,有限元分析在精度、稳定性和适用范围等方面得到了显著提升,能够处理更加复杂和大规模的问题。


有限元静力学分析基础



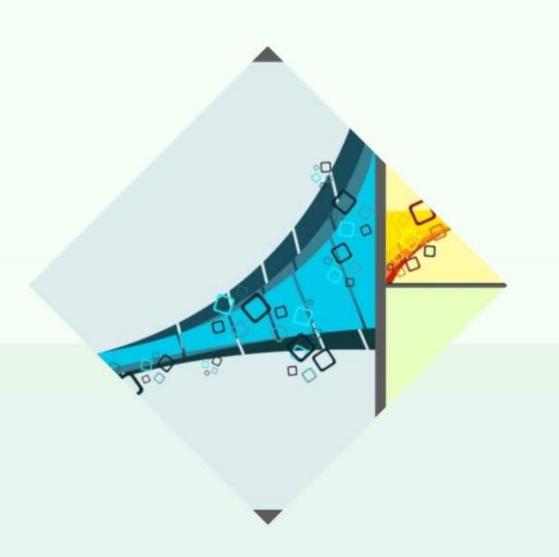
弹性力学基本方程

包括平衡方程、几何方程和物理方程,用于描述物体的应力、应变和位移之间的关系。



应力和应变的定义及关系

介绍应力和应变的概念,以及它们在 不同坐标系下的表达方式。


弹性模量

描述材料在受到外力作用时抵抗变形 的能力,包括杨氏模量、泊松比和剪 切模量等。

有限元离散化

离散化的基本思想

将连续的物理系统分割成有限个小的、相互连接的单元,每个单元具有简单的几何形状和物理属性。

常见的有限元单元类型

如一维线单元、二维面单元和三维体单元等,以及它们在有限元分析中的应用。

节点和自由度

描述每个单元的节点和对应的自由度,以及它们在建立有限元方程中的作用。

刚度矩阵与载荷向量

01

刚度矩阵的定义和 性质

描述刚度矩阵的物理意义、计算 方法和特性,以及它在建立有限 元方程中的作用。

02

载荷向量的定义和 计算

介绍载荷向量的概念、计算方法 和作用,以及它在建立有限元方 程中的作用。

03

边界条件的处理

描述如何将边界条件引入有限元 方程中, 以及常见的边界条件类 型。

约束处理与求解方法

约束处理的常用方

法

如拉格朗日乘子法和罚函数法等, 以及它们在处理约束条件时的优 缺点。

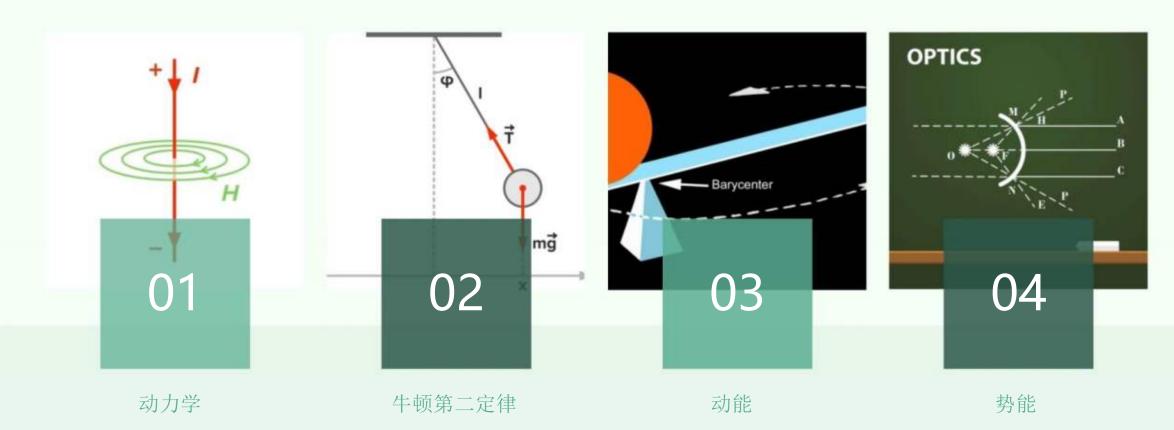
求解方法的分类与

选择

根据问题的特性和规模,选择合适的求解方法,如直接法、迭代 法和优化法等。

有限元分析软件介

绍


介绍一些常用的有限元分析软件,如ANSYS、ABAQUS和SolidWorks Simulation等,以及它们在有限元分析中的应用。

有限元动力学分析基础

动力学基本概念

研究物体运动和力之间关系的 科学。

物体运动加速度与作用力成正 比,与物体质量成反比。

物体由于运动而具有的能量。

物体由于位置或形变而具有的 能量。

有限元动力学方程

拉格朗日方程

描述系统运动状态的微分方程。

哈密顿原理

最小作用量原理的一种形式,用于确定系统的运动轨迹。

有限元方程

将连续的物理问题离散化为有限个单元,通过求解有限个单元的 方程来近似求解原问题。

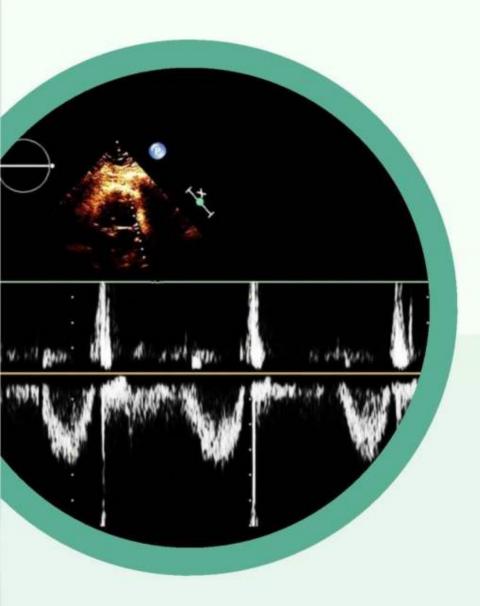
模态

系统的固有振动特性,包括频率、阻尼和振型。

2

模态分析

通过求解系统的特征值和特征向量,得到系统的 模态参数。


模态叠加

将多个模态组合起来,以描述系统的复杂振动行 为。

瞬态动力学分析

瞬态响应

01

02

03

系统在随时间变化的载荷作用下的动态响应。

时间积分法

用于求解瞬态动力学方程的数值方法,包括欧拉法、龙格-库塔法和辛普森法等。

载荷步

将时间离散化为一系列小的时段,每个时段称为载荷步。

有限元分析中的关键技术

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/047034023026006122