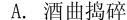
广东省 2022 届高三六校第四次联考

化学

(本试卷共8页,21小题,满分100分。考试用时75分钟)

可能用到的相对原子质量: H1 C12 N14 O16 C135.5 S32 Mn55 F19


- 一、选择题:本题共16小题,共44分,第1~10小题,每小题2分;第11~16小题,每小题4分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. 化学与生活密切相关,下列说法不正确的是
- A. 港珠澳大桥使用了大量的钢铁、水泥等材料,其中水泥属于传统无机非金属材料
- B. 控制碳排放、进行碳捕捉、实施碳中和",碳捕捉是指 精捉释放到空气中的 CO 2"
- C. 罗浮山百草油是以茶油为辅料溶解多种中草药成分而成,茶油属于高分子化合物
- D. 维生素 C 又称 "抗坏血酸", 能将 Fe3+转变为 Fe2+, 这说明维生素 C 具有还原性

【答案】C

【解析】

【详解】A. 水泥成分是硅酸盐,属于传统无机非金属材料,故A正确;

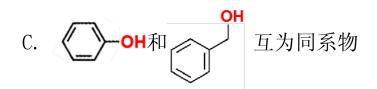
- C. 荼油成分是酯类,不属于高分子化合物,故C错误;
- D. 维生素 C 能将 Fe₃₊转变为 Fe₂₊, 维生素 C 做还原剂,说明维生素 C 具有还原性,故 D 正确;故选: C。
- 2. 我国酒文化源远流长。下列古法酿酒工艺中,以发生化学反应为主的过程是

B. 高温蒸馏

C. 酒曲发酵

D. 泉水勾兑

【答案】C


【解析】

【详解】A. 酒曲捣碎过程为物质状态变化,无新物质生成,不是化学变化,A 错误;

- B. 高温蒸馏是利用沸点不同通过控制温度分离乙醇,过程中无新物质生成,属于物理变化,B 错误;
- C. 酒曲发酵变化过程中生成了新的物质乙醇,属于化学变化,C正确;
- D. 泉水勾兑是酒精和水混合得到一定浓度的酒精溶液,过程中无新物质生成,属于物理变化,D 错误;答案选 C。
- 3. 下列说法正确的是
- A. 中子数为 20 的氯原子: 37 C1

B. CO₂分子的比例模型示意图为(

D. $-NH_2$ 和 NH_2 的电子式相同

【答案】A

【解析】

【详解】A. 氯元素的质子数为 17,中子数为 20 的氯原子的质量数为 37,该原子的表示为: $^{37}_{17}$ C1,故 A正确;

B. 二氧化碳分子中碳原子半径大于氧原子半径,二氧化碳正确的比例模型为:

故 B 错误;

- C. OH官能团是酚羟基, OH 是醇羟基, 官能团不同, 不是同系物, 故 C 错误;
- D. 氮原子的最外层有 5 个电子,氨基中 N 原子上有 2 个 N-H 键、1 对孤对电子、有 1 个未成对电子,其电子式为 $\mathbf{H}: \mathbf{N}: \mathbf{H}$, $\mathbf{N}: \mathbf{H}$ 为得到一个电子,电子式为 $\mathbf{[H:N:H]}$,故 D 错误; 故选: A 。
- 4. 物质的性质决定其用途。下列说法正确的是

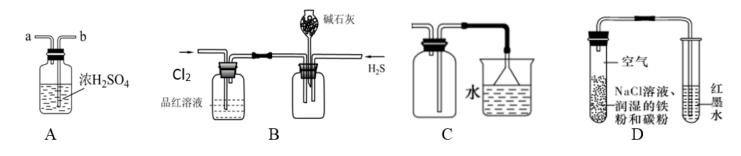
选项	化学原理	生产活动	
A	Al ₂ O ₃ 熔点高	A1 ₂ 0 ₃ 坩埚可以熔融 KOH	
В	P ₂ 0 ₅ 具有强吸水性	P ₂ O ₅ 可作食品干燥剂	
С	NaHCO 3受热易分解	NaHCO 3可用于抗酸药物	
D	钾元素焰色反应显紫色	钾的化合物可用于制作烟花	

A. A

В. В

C. C

D. D


【答案】D

【解析】

- 【详解】A. 氧化铝能够与 KOH 反应,所以不能用 $A1_2O_3$ 制成的坩埚加热 KOH 固体至熔融态,故 A 错误;
- B. P_9O_5 能和冷水反应生成有毒的偏磷酸 HPO $_3$,所以不能用作食品干燥剂,故 B 错误;
- C. NaHCO $_3$ 受热易分解,可用作发酵粉的主要成分,NaHCO $_3$ 能与胃液中的盐酸反应,因此可用于制抗酸药物,其用途与性质无关,故 C 错误;
- D. 钾元素焰色反应显紫色, 所以钾的化合物可用于制作烟花, 故 D 正确;

故选: D。

5. 下列不能达到实验目的的是

- A. 利用 A 装置可以除去 HC1 气体中的水蒸气
- B. 利用 B 装置探究 Cl₂ 的漂白性和氧化性
- C. 利用 C 装置收集 NH 3 并进行尾气吸收
- D. 利用 D 装置检验该条件下 Fe 发生了析氢腐蚀

【答案】D

【解析】

- 【详解】A. HC1 是酸性气体,浓硫酸具有吸水性,可用浓硫酸来除去 HC1 气体中的水蒸气,故 A 正确;
- B. 氯气通入品红溶液中褪色,证明其漂白性,通入硫化氢和氯气发生氧化还原反应,证明其氧化性,故 B 正确;
- C. 氨气密度比空气小,可用向下排空气发生收集,氨气极易溶于水,可用倒扣的漏斗来防倒吸,进行尾气处理,故 C 正确;
- D. NaCl 溶液是中性溶液,铁与氧气和水发生吸氧腐蚀,故 D 错误;

故选: D。

- 6. N 为阿伏加德罗常数的值,下列说法正确的是
- A. 1mo1CH 3OH 中所含的 C-H 共价键数目为 4N A
- B. 标准状况下,NO 和 0_2 各 11.2L混合,所得混合气体的分子总数为 0.75N_A
- C. 室温下, 1L0. 1mo1/L的盐酸溶液,由水电离出的 OH -离子数目为 10-13N A
- D. 含 2mo1H $_2$ SO $_4$ 的浓硫酸与足量的 Cu 在加热的条件下反应,产生 N $_A$ 个 SO $_2$ 分子

【答案】C

【解析】

H 【详解】A. CH₃OH 结构式为H−C−O−H, 1mo1CH₃OH 中所含的 C−H 共价键数目为 3N_A, A 错误;

B. 标准状况下,NO 和 0₂各 11. 2L混合气体物质的量为 $n = \frac{V}{V} = \frac{11.2L}{22.4L/mo} = 0.5 mol$, 0.5 mol—氧化氮完

全反应消耗 0.25mo1氧气,反应后还剩余 0.25mo1氧气,反应后气体的物质的量为 0.75mo1,由于部分二氧化氮转化成四氧化二氮,所以所得混合气体的物质的量小于 0.75mo1,所得混合气体的分子总数小于 0.75N_A,B 错误;

C. 0.1mo1/L的盐酸中, 氢离子浓度为 0.1mo1/L几乎全部来自于酸, 而氢氧根的浓度为

$$c (OH -) = \frac{K}{c (H -)} = \frac{10^{-14}}{10^{-1}} = 10^{-13} mol/L$$
全部来自于水,物质的量 $n = cV = 10^{-13} mol/L \times 1L = 10^{13} mol$,0H -离子数目

为 10-13N_A, C 正确;

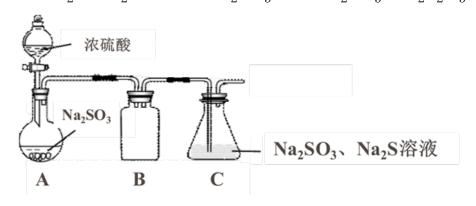
D. 过量的铜与浓硫酸反应,随着反应进行浓度变稀,稀硫酸与铜不反应,可产生 SO_2 气体分子小于 N_A 个, D. 错误;

故选: C。

- 7. 下列反应的离子反应方程式正确的是
- A. 二氧化碳通入饱和碳酸钠溶液中: $CO_{2}^{+}CO_{3}^{2-}+H_{2}^{-}O$ —2HCO $\frac{1}{3}$
- B. 向 FeCl₃溶液中加入少量 KSCN 溶液: Fe₃₊+3SCN -—Fe (SCN)₃ ↓
- C. [Ag(NH₃)₂]OH 溶液中加入过量盐酸: [Ag(NH₃)₂]++OH -+3H ++C1=AgC1 ↓ +2NH + +H₂O
- D. 向 H_{2} 18 O 中投入 Na_{2} 0 $_{2}$: $\mathrm{2Na}_{2}$ 0 $_{2}$ + H_{2} 18 O = $\mathrm{4Na}_{+}$ + $\mathrm{4OH}_{-}$ + $\mathrm{180}_{2}$ ↑

【答案】C

【解析】


【详解】A. 饱和碳酸钠溶液通入二氧化碳的离子反应为: $2Na^{++} CO = 2-+CO = 2+H = 20$ — 2NaHCO = 3 从 故 A 错误;

- B. 向 FeCl₃溶液中加入少量 KSCN 溶液,离子方程式:Fe3++3SCN —Fe(SCN)₃,故B错误;
- C. [Ag(NH₃)₂]OH 的溶液中加入足量盐酸产生沉淀,离子方程式:

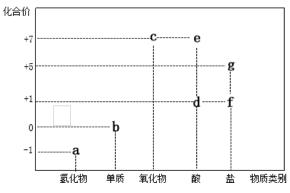
 $[Ag(NH_3)_2]_++OH_-+3H_++C1=AgC1\downarrow+2NH_++H_2O$,故C 正确;

D. Na $_2$ O $_2$ 与水反应时,Na $_2$ O $_2$ 既是氧化剂,又是还原剂,水中的氧元素不变价,O $_2$ 分子中不含 $_{18}$ O $_{18}$ O 应该在 OH -中,正确的离子方程式为: $_{2}$ H $_{2}$ IsO+2Na $_{2}$ O $_{2}$ —2OH +2 $_{18}$ OH $_{2}$ +4Na $_{2}$ ++O $_{2}$ †,故 D 错误;故选: C 。

8. 硫代硫酸钠晶体 $(Na_2S_2O_3 \cdot 5H_2O)$ 俗称海波,广泛应用于照相定影及纺织业等领域。实验室利用 " $3SQ + 2Na_2S = 3S \downarrow + 2Na_2SO_3$, $S + Na_2SO_3 = Na_2S_2O_3$ "原理制备 $Na_2S_2O_3$ 溶液,装置如图:

下列说法错误的是

- A. 制取 SO 2 的反应体现了浓硫酸的酸性和氧化性
- B. 装置 B 的作用是安全瓶, 防倒吸
- C. 为提高原子利用率, $C + Na_2S + Na_2SO_3$ 物质的量之比为 2: 1
- D. 该实验不足之处是缺少尾气处理装置


【答案】A

【解析】

- 【详解】A. 浓硫酸和 Na_2SO_3 制取 SO_2 和 Na_2SO_4 ,利用强酸制弱酸原理,S 元素化合价不变,反应只体现了浓硫酸的酸性,故 A 错误;
- B. 装置 C内 SO $_2$ 反应被吸收,导致压强减小,装置 B的作用是安全瓶,防倒吸,故 B正确;
- C. 由 3SO $_2$ +2Na $_2$ S=3S \downarrow +2Na $_2$ SO $_3$, S+Na $_2$ SO $_3$ =Na $_2$ S $_2$ O $_3$, Na $_2$ S 与 Na $_2$ SO $_3$ 物质的量之比为 2: 1,反应物恰好完全反应,可提高原子利用率,故 C 正确;
- D. SO $_2$ 是有毒气体,该实验不足之处是缺少尾气处理装置,应在 C 装置后接一装有 NaOH 溶液的装置,故 D 正确;

故选: A。

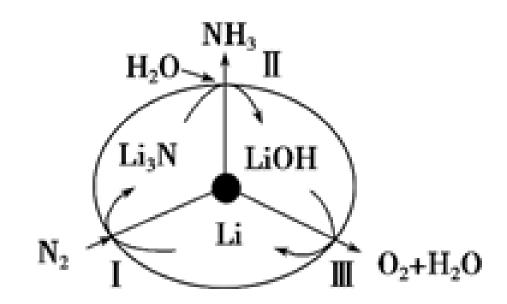
9. 部分含氯物质的分类与相应化合价关系如图所示。

下列推断不合理的是

- A. 一定条件下a与g可生成b
- B. f的水溶液呈酸性
- C. c溶于水能生成 e, c是酸性氧化物
- D. 可存在 $a \rightarrow b \rightarrow d \rightarrow f$ 的转化关系

【答案】B

【解析】


【分析】a是 HC1、b 是 Cl2、c 是 Cl2O $_7$ 、d 是 HC1O 、e 是 HC1O $_4$ 、f 是 C1O $_7$ g 是 C1O $_7$;

【详解】A. a是 HC1 具有还原性, g是 C10 $\frac{1}{3}$ 具有氧化性, C1 发生归中反应可生成 C1 $\frac{1}{2}$, 故 A 正确;

- B. f是C10-, 其发生水解生成弱酸HC10和OH-, 溶液呈碱性, 故B错误;
- C. c和 e 都是+7 价的氯元素,其氧化物溶于水得到对应的酸,c是 $C1_20_7$ 能与强碱溶液反应生成正盐和水,是酸性氧化物,故 C 正确;
- D. HC1 和二氧化锰反应转化为氯气,氯气和水反应生成 HC10 , HC10 与 NaOH 反应生成 NaC10 , 可实现转化,故 D 正确;

故选: B。

10. 金属锂及其化合物用途广泛。在 氮的固定"中其转化过程如图所示,下列说法错误的是

- A. 该转化过程 Li, Li₃N, LiOH 均为中间产物
- B. 过程 I 发生了共价键的断裂和离子键的形成
- C. 过程 II发生复分解反应,不涉及电子转移
- D. 该转化过程总反应为 2N 2+6H 20=4NH 3+30 2

【答案】A

【解析】

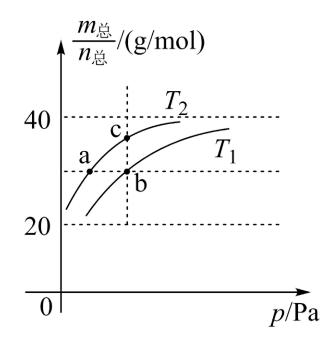
【详解】A. 该转化过程 Li 先与氮气参与反应,再实现循环转化,则 Li 不是中间产物,故 A 错误;

- B. 过程 I为 $6Li+N_2=2Li_3N$, N_2 含氮氮三键的共价键, Li_3N 含离子键,发生了共价键的断裂和离子键的形成,故 B 正确;
- C. 过程 I为 Li₃N+3H₉0=3Li0H+NH₃h, 没有元素化合价发生变化,不涉及电子转移,且都是化合物,则过

程 II是复分解反应,故 C 正确;

D. 根据过程 I为 6Li+N $_2$ =2Li $_3$ N ,过程 II为 Li $_3$ N+3H $_2$ O=3LiOH+NH $_3$,过程 II为 4LiOH=4Li+O $_2$ ↑ +2HO 可知,将 2I+II×4+III可得总反应为: $_2$ N $_2$ +6H $_2$ O=4NH $_3$ +3O $_2$,故 D 正确;

故选: A。


11. 五倍子是一种常见的中草药,其有效成分为 X,在一定条件下 X 可分别转化为 Y、Z。下列说法正确的是

- A. 可用酸性 $KMnO_4$ 鉴别 X 和 Y
- B. Y 难溶于水
- C. Z 中所有碳原子一定在同一平面上
- D. 1molZ 与 NaOH 溶液反应时,最多可消耗 8molNaOH

【答案】D

【解析】

- 【详解】A. X 含碳碳双键和醇羟基,都能使酸性 $KMnO_4$ 溶液褪色,Y 含酚羟基,也能使酸性 $KMnO_4$ 溶液褪色,Y 含酚羟基,也能使酸性 $KMnO_4$ 溶液 褪色,不能鉴别,故 A 错误;
- B. Y 含多个羟基, 可与水形成氢键, 较易溶于水, 故 B 错误;
- C. 由于单键可旋转,则所有碳原子不一定在同一平面上,故 C 错误;
- D. Z 中酚羟基、酯基水解生成的羧基和酚羟基、羧基能和 NaOH 反应, Z 分子中含有 5 个酚羟基、1 个羧基、1 个能水解生成羧基和酚羟基的酯基, 所以 1mo1Z 最多能消耗 8mo1NaOH , 故 D 正确; 故选: D。
- 12. 已知 $(HF)_2(g)$ 2HF(g) $\Delta H>0$,平衡体系的气体总质量 (m_g) 与总物质的量 (n_g) 之比在不同温度下随压强的变化曲线如图所示。下列说法正确的是

A. 温度: T₁<T₂

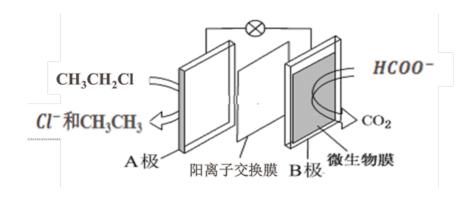
B. 平衡常数: K(a)=K(b)<K(c)

C. 反应速率: $v_{a_{\tau}} > v_{b_{\tau}}$

D. 当
$$\frac{m}{n}$$
=30g • mo礼时, $n(HF)$: $n[(HF)_2]=1:1$

【答案】D

【解析】


【详解】A. 由图像可知,b、c 两个点的压强相同, T_2 温度下 c 点对应的平均摩尔质量大于 T_1 温度下 b 点对应的平均摩尔质量,反应前后气体总质量保持不变,平均摩尔质量大说明气体总物质的量小,即 T_2 温度时,平衡向逆反应方向移动,该反应的正反应为吸热反应,降低温度,平衡向逆反应方向移动, T_2 < T_1 ,故 A 错误;

- B. 由于温度 T2 < T1,该反应的正反应为吸热反应,温度越高,平衡常数 K 越大,所以平衡常数 K(a) = K(c) < K(b),故 B 错误;
- C. b 点对应的温度 T_1 和压强大于 a 点对应的温度 T_2 和压强,温度越高、压强越大,反应速率越快,所以反应速率 $v_{a_{\pi}} < v_{b_{\pi}}$,故 C 错误;
- D . 当 $\frac{m}{n}$ =30g•mol-1 时,设 HF 物质的量为 xmol,(HF)₂ 的物质的量为 ymol,

$$\frac{\text{xmo1} \times 20\text{g/mo1+ymo1} \times 40\text{g/mo1}}{\text{xmo1+ymo1}} = 30\text{g} \cdot \text{mo1-1}, 解得 x: y=1: 1, n(HF): n[(HF)_2]=1: 1, 故 D 正确;$$

故选: D。

13. 利用微化学电池可以除去废水中的甲酸钠和卤代烃, 其原理如图所示, 下列说法正确的是

- A. 每生成 22.4LCH₃CH₃, 有 1mole-发生转移
- B. B 极电极反应式为: HCOO --2e=CO ₂ ↑ +H
- C. 电子流向: B 极→导线→A 极→溶液→B 极
- D. 一段时间后, 电解质溶液的 pH 增大

【答案】B

【解析】

【分析】该装置为原电池, $HCOO \rightarrow CO_2$,C 元素化合价升高,则 B 极为负极,电极反应式为 $HCOO -2e=CO_2 \uparrow +H$,A 极为正极,电极反应式为: $CH_3 CH_2 C1+H+2e=CH_3 CH_3 +C1-$;

【详解】A. 由分析知,A 极为正极,电极反应式为: $CH_3CH_2C1+H_2+2e=CH_3CH_3+C1$ -,每生成 $1mo1CH_3CH_3$ -,有 2mo1e-发生转移,由于未知标准状况下不能计算 22.4L 气体的物质的量,则无法计算转移电子数,故 A 错误;

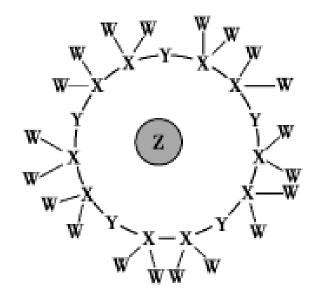
- B. B 极为负极, 发生氧化反应, 电极反应式为 HCOO --2e=CO 2 ↑ +H, 故 B 正确;
- C. 电子只能在电极和导线中转移,不能通过溶液,故 C 错误;
- D. 电池总反应为: $HC00 CH_3CH_2C1 = CO_2 \uparrow + CH_3CH_3 + C1$ -, 反应没有消耗也没有生成 H^+ , 则一段时间后, 电解质溶液的 pH 不变,故 D 错误;

故选: B。

14. 下列实验操作、现象及结论均正确的是

	实验操作	现象	结论
A	取 2mL 卤代烃样品于试管中,加 5mL20%NaOH 水溶液混合后加热,再滴加 AgNO 3溶液	产生白色沉淀	该卤代烃中含有氯元素
В	将稀硫酸酸化的 H ₂ O ₂ 溶液滴入 Fe(NO ₃) ₂ 溶液中	溶液变为黄色	证明氧化性: H ₂ O ₂ >Fe ₃₊
С	往乙醇和浓硫酸的混合溶液中加入一定量的乙酸溶液	加热后产生有香味的物质	乙酸能与乙醇发生酯化反应
D	向含有 ZnS 和 Na ₂ S 的悬浊液中滴加 CuSO ₄ 溶液	生成黑色沉淀	K _{sp} (CuS) < K _{sp} (ZnS)

【答案】C


【解析】

【详解】A.溶液中加入 NaOH 后体系中剩余大量的 OH-,再加入硝酸银溶液后 OH-也可以使 Ag+生产白色 沉淀,干扰了氯元素的检验,故 A 错误;

- B. 硝酸根离子在酸性条件下氧化亚铁离子,则不能说明氧化性: H₂O₂>Fe₃₊,故 B 错误;
- C. 酯化反应生成酯具有香味,乙酸、乙醇发生了酯化反应,故C正确;
- D. Na $_2$ S 与 CuSO $_4$ 溶液反应生成黑色沉淀为 CuS ,为沉淀的生成,不能确定硫化锌沉淀转化为硫化铜沉淀,不能比较 K $_{sp}$,故 D 错误;

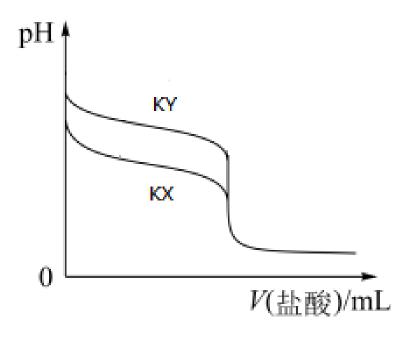
故选: C。

15. 科学家利用四种原子序数依次递增的短周期元素 W、X、Y、Z"组合"成一种具有高效催化性能的超分子,其分子结构如图(实线代表共价键)。W、X、Z分别位于不同周期,Z是同周期中金属性最强的元素。下列说法正确的是

- A. 离子半径大小: Z>Y
- B. 图中 2 表示其简单离子
- C. 元素 W 、X、Y 组成的化合物可能是电解质
- D. X 与 Y 的氢化物沸点: Y>X

【答案】C

【解析】


【分析】原子序数依次递增的W、X、Y、Z四种短周期元素,W、X、Z分别位于不同周期,为H、Y、Z分别位于第二、第三周期; Z是则W同周期中金属性最强的元素,则Z为Na;分子结构中X形成4个共价键,位于 IVA族,其原子序数小于Y,则X为C元素;Y形成2个共价键,位于第二周期VIA族,为0元素,以此来解析;

【详解】由上述分析可知,W 为H、X 为C、Y 为O、Z 为Na;

- A. 半径比较一般先看层数,电子层数一样,核内质子数越少半径越大,由以上分析知,Y 为 0、Z 为 Na, 离子的层数一样,0 的核内质子数少,02-半径大于 Na+半径,A 错误;
- B. 由以上分析知, Z 为 Na, 简单离子为 Na+, B 错误;
- C. 由以上分析知, W 为 H、X 为 C、Y 为 O、可以形成化合物 H₂CO₃, CH₃COOH 等为电解质, C 正确;
- D. 由以上分析可知,X 为 C、Y 为 O、形成的氢化物分别为 CH $_4$ 、H $_2$ O,非金属性越强,简单气态氢化物 越稳定,非金属性 O>C ,H $_2$ O 稳定性大于 CH $_4$,D 错误;

故选C。

16. 常温下,用 0. 10mol •L的盐酸分别滴定 20. 00mL 浓度均为 0. 10mol •L两种一元弱酸的钾盐(KX、KY)溶液,滴定曲线如图所示。下列说法错误的是

- A. 该 KY 溶液中: c(K+)>c(Y-)>c(OH-)>c(H+)
- B. 当 pH=7 时,两溶液中: c(X-) < c(Y-)
- D. 分别滴加 20.00mL 盐酸后,再将两种溶液混合: c(X-)+c(Y-)=c(H-)-c(OH-)

【答案】B

【解析】

【详解】A. 由题意可知 HY 为一元弱酸, KY 溶液呈碱性 c(OH-)>c(H+), 又因为 Y-+H $_2O$ HY+OH -, c(K+)>c(Y-)>c(Y-)>c(H+), A 正确;

B. 根据电荷守恒 c(K+)+c(H+)=c(Y-)+c(OH-)+c(C1), H=7 时, c(H+)=c(OH-), 则 c(K+)=c(Y-)+c(C1), 同理 c(K+)+c(H+)=c(X-)+c(OH-)+c(C1), H=7 时, c(H+)=c(OH-), 则 c(K+)=c(X-)+c(C1), KY 的碱性强, 弱酸根的水解程度大,则溶液呈中性时所消耗的盐酸的量大,溶液中 c(C1-)大, c(X-)>c(Y-), B 错误;

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/05704504111
3010001