01. 什么是可编程序控制器?

答:可编程序控制器是一种专为工业环境下应用设计的数字运算/操作的电子系统,它采用可编程的存储器进行逻辑运算,顺序控制,定时,计数和算术运算等操作,并通过数字式/模拟式输入和输出模板控制各种生产机械或生产过程。

02. SIMATIC S5-90U/95U 与 S5-100U 的 I / 0 模板可否共用?

答: S5—90U 与 S5—95U 可以使用 S5-100U 模板进行 I/O 扩展。

03. STEP 7 软件提供了几种程序结构?

答:线性化编程;分部编程以及结构化编程。

04. 简述 PLC 系统的现场调试方法?

答: 1. 信号模拟。2. 信号监视。3. 寻找/替换与换线。4. 变量监控与修改。5. 输出/输入强制。

05. SIMATIC S7—300/400 的常用组织块及功能?

答: 1. OB1 主程序循环。2. OB10 时间中断。3. OB20 延时中断。4. OB35 循环中断。5. OB40 硬件中断。6. O 100 再启动。

06. 对 PLC 控制系统进行总体设计时,主要考虑哪几个方面?

答: 1. 明确控制对象。2. 确定系统的构成。3. 选择控制方式。4. I/O点数及存储容量。5. 设计的基本内容和步骤。

07. SIMATIC S7-300 与 S7-400 的 I/O 编址方式有什么异同点?

答: S7-400 可编程控制器 I/O 模板的默认编址与 S7-300 不同,它的输入/输出地址分别按顺序排列。数字 I/O 模板的输入/输出默认首地址为 0,模拟 I/O 模板的输入/输出默认首地址为 512。模拟 I/O 模板的输入/输出地址可能占用 32 个字节,也可能占用 16 个字节,它是由模拟量 I/O 模板的通道数来决定的。

08. 请填写以下配置的 SIMATICS7-300 可编程控制器的 I/O 地址。

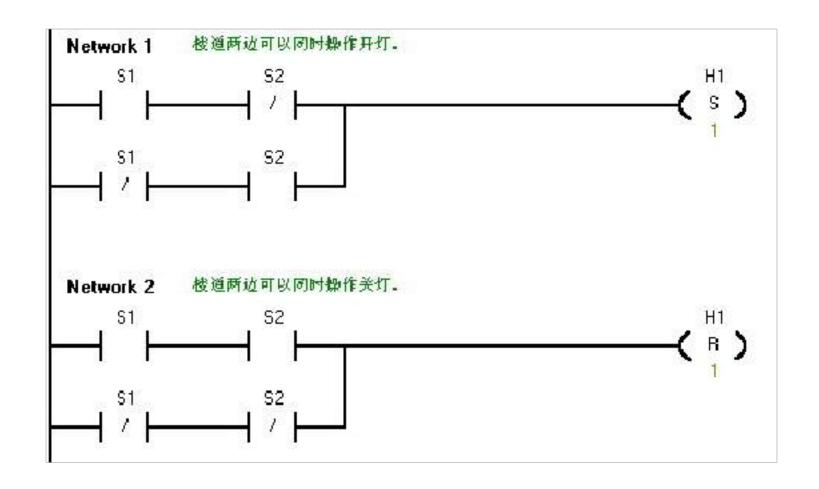
模拟输 模拟输 数字输 数字输 数字输 电源 CPU 接口 出模板 入模板 出模板 入模板 入模板 模板 模板 模板 $8 \times \pm 10 \text{V}$ $8 \times \pm 10 \text{V}$ DQ32 DI32 DI16

答:模拟输入: IW256、IW258、IW260、IW262、IW264、IW266、IW268、IW270 模拟输出 QW272、QW274、QW276、QW278、QW280、QW282、QW284、QW286 数字输入: IB8、IB9、IB10、IB11、IB12、1B13 数字输出: QB16、QB17、QB18、 QB19 。

09. PROFIBUS DP 系统有几种方式?

答: 1. DP 接口的主站系统。2. 用通讯模板 CP 的主站系统。3. 智能从站的 DP 系统。

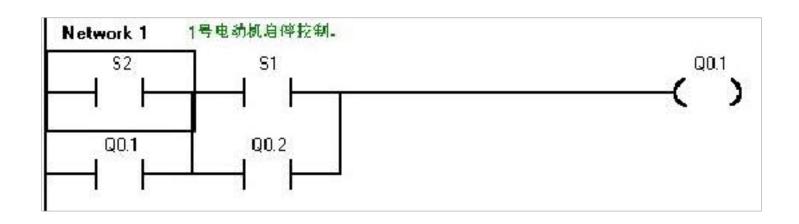
10. 简述 MPI 通讯的发送/接收数据规则。

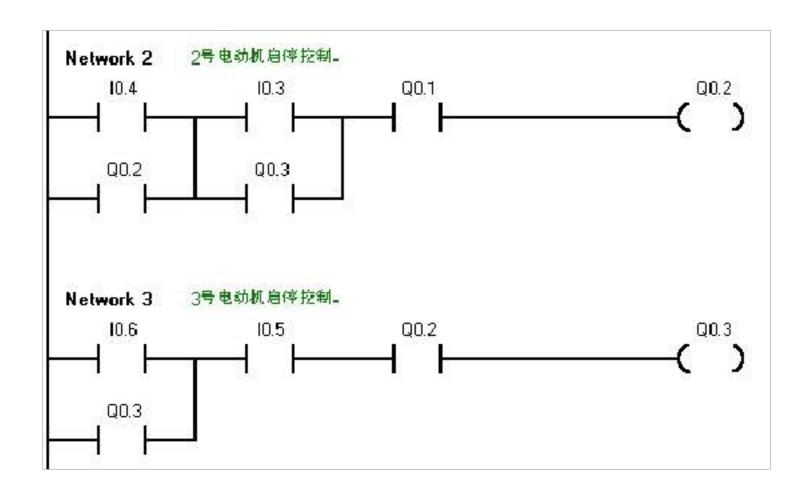

答: 1个MPI 站可以发送到多个MPI 站, 1个MPI 站只能接收 1个MPI 站的发送数据。

编程练习:

01. 照明控制。

完成楼道内对照明灯的双向控制

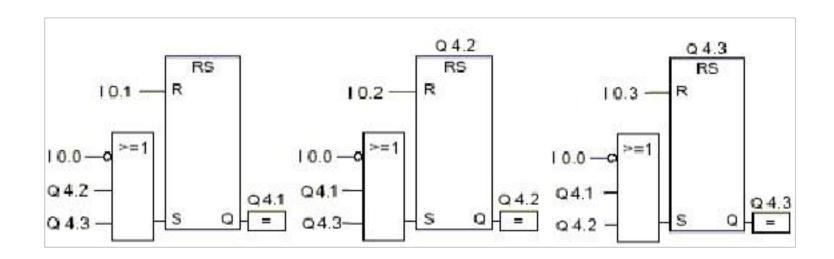

序 号	PLC 地址	符号	符号说明	工作原理
1	S1		楼道内左侧开关	
2	S2		楼道内右侧开关	
3	H1			


02. 跟随电路。

完成对三台电动机的启停控制,1号电动机可以自由启动,2号电动机在1号电动机启动后才可以启动,3号电动机在2号电动机启动后才可以启动。3号电动机可以自由停止,3号电动机不停止2号电动机不能停止,2号电动机不停止1号电动机不能停止。

序号	PLC 地址	电气符 号	状态	符号说明	工作原理
1	10.0	S1	NC	停止按钮	1号电动机停止。
2	I0. 1	S2	NO	启动按钮	1号电动机启动
3	10.2	S3	NC	停止按钮	2号电动机停止。
4	10.3	S4	NO	启动按钮	2号电动机启动
5	I0. 4	S5	NC	停止按钮	3号电动机停止。
6	10.5	S6	NO	启动按钮	3号电动机启动
7	10.6	KM1	NO	启动按钮	1号电动机运行
8	I1. 1	KM2	NO	温度开关	2号电动机运行
9	I1. 2	KM3	NO	温度开关	3号电动机运行

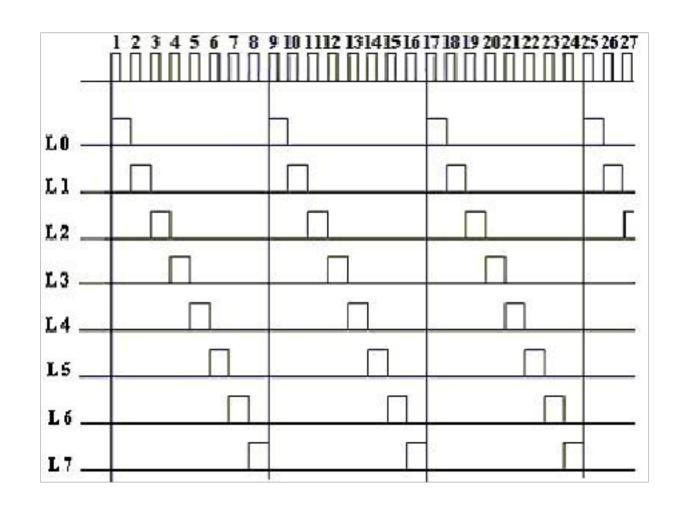

```
Network 3 3号电动机自停控制。
10.6 10.5 Q0.2 Q0.3
Q0.3 Q0.3
```

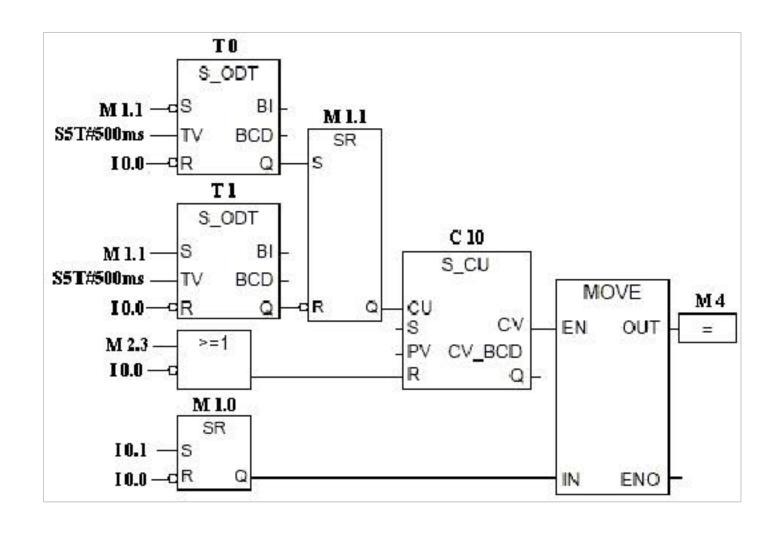


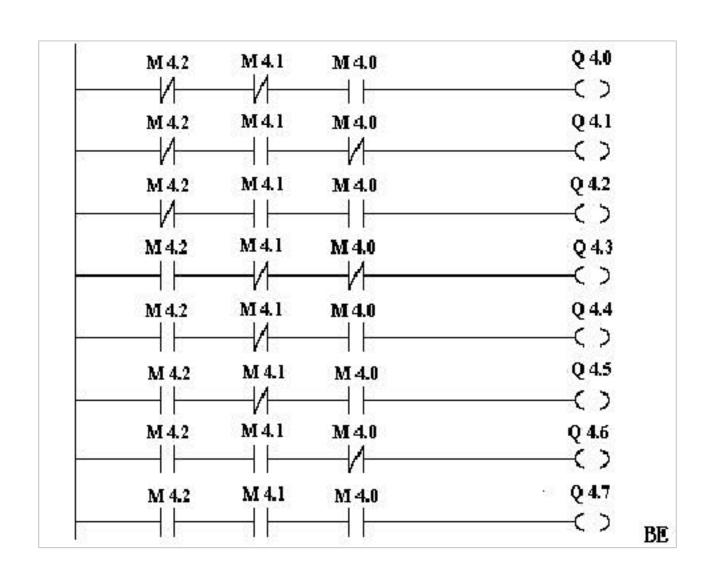
03. 3 路抢答器。

由 PLC 控制的抢答器系统是由三个抢答席和一个主持人席组成的,每个抢答席上各有一个抢答按钮和一盏抢答指示灯。参赛者在允许抢答时,第一个按下抢答按钮的抢答席上的指示灯将会亮,且释放抢答按钮后,指示灯仍然亮;此后另外两个抢答席上即使再按各自的抢答按钮,其指示灯也不会亮。这样,主持人就可以轻易地知道谁是第一个按下抢答器的。该题抢答结束后,

主持人按下主持人席上的复位按钮(常闭按钮),则指示灯熄灭,又可以进行下一题的抢答比赛。

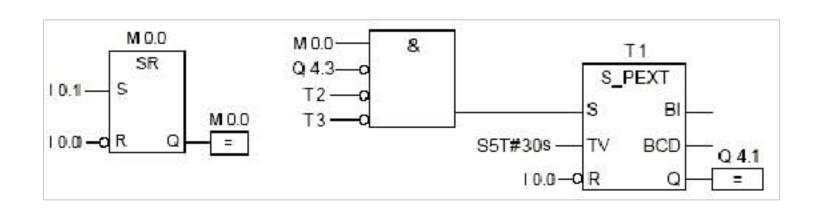

序号	PLC 地址	电气符 号	状态	符号说明	工作原理
1	10.0	S1	NC	按钮	主持人复位按钮
2	I0. 1	B2	NO	按钮	1号台抢答按钮
3	10.2	В3	NO	按钮	2号台抢答按钮
4	10.3	S0	NO	按钮	3号台抢答按钮
5	Q4. 0	ST	**	指示灯	1号台抢答成功指示灯

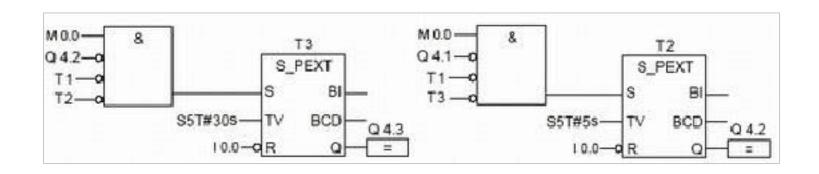

04. 霓虹灯控制程序设计。


某霓虹灯共有八盏灯,设计一段程序每次只点亮一盏灯,间隔一秒钟循环往复不止。解题思路:

- 1. 首先利用定时器产生定时脉冲发生。
- 2. 用脉冲发生器的信号作为计数器的计数输入。
- 3. 根据计数器的当前值依次驱动各个不同的灯。
- 各个灯亮的时序图如下:

序号	PLC 地址	电气符 号	状 态	符号说明	工作原理
1	10.0	S1	NC	停止按钮	
2	I0. 1	S0	NC	启动按钮	
3	Q4. 0	NA	NC	指示灯	0 号指示灯
4	Q4. 1	В	NO	指示灯	1号指示灯
5	Q4. 2	1B1	NO	指示灯	2 号指示灯
6	Q4. 3	1B2	NO	指示灯	3号指示灯
7	Q4. 4	2B1	NO	指示灯	4 号指示灯
8	Q4. 5	2B2	NO	指示灯	5号指示灯
9	Q4.6	3B1	NO	指示灯	6号指示灯
10	Q4. 7	3B2	NO	指示灯	7号指示灯

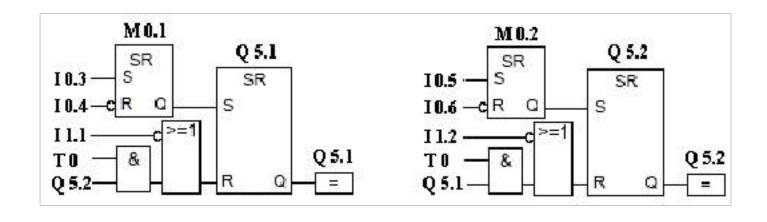


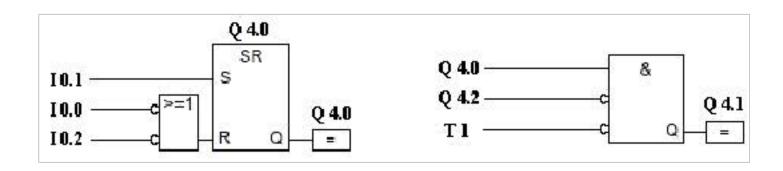


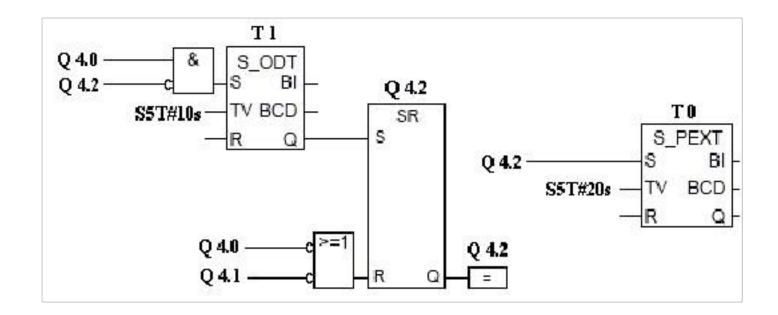
05. 十字路口交通信号灯控制。

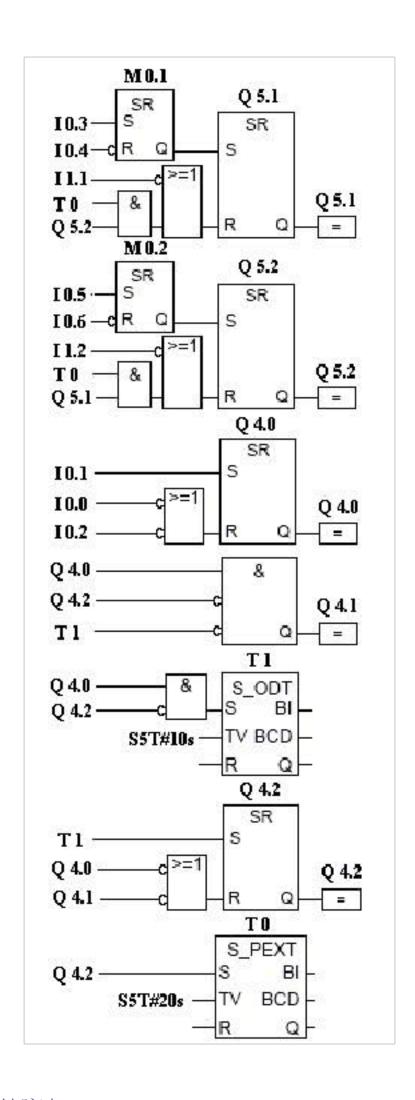
利用扩展脉冲定时器实现十字路口的交通灯的自动切换运行。(仅考虑一个方向) 要求做到通电后,首先红灯亮 30 秒,然后绿灯亮 30 秒,然后黄灯亮 5 秒,接下来红灯亮 30 秒··········往复循环不止,直到切断电源,所有灯全部熄灭。

序号	PLC 地址	电气符 号	状态	符号说明	工作原理
1	10.0	S1	NC	停止按钮	
2	I0. 1	S2	NO	启动按钮	
3	Q4. 1	В3	NO	指示灯	红色指示灯
4	Q4. 2	S0	NC	指示灯	黄色指示灯
5	Q4. 3	ST	NO	指示灯	绿色指示灯


06. 用电设备分配控制。


某生产车间有大用电设备三台,两台 200KW 的加热炉,一台 100KW 的电动机,车间供电变压器足以满足三台设备正常工作。但若两台加热炉都在加热过程中,则电动机不能启动(因启动电流太大,电网无法承受)。事实上,加热炉在保温状态下,加热器并不通电,因此其负荷是断续状态的。可以在启动电动机时至少有一台加热炉处在断电状态。


控制要求:


- 1. 电动机启动方式为星-三角减压起动。
- 2. 若两个加热器都在工作,则启动电动机时切断其中一台的电源。在电动机启动过程中不允许断电的加热器通电。

序号	PLC 地址	电气符 号	状态	符号说明	工作原理
1	10.0	RF1	NC	热继电器	电动机热保护。
2	I0. 1	S1	NC	停止按钮	电动机停止
3	10.2	S2	NO	启动按钮	电动机启动
4	10.3	S3	NC	停止按钮	1#加热器停止
5	10.4	S4	NO	启动按钮	1#加热器起动
6	10.5	S5	NC	停止按钮	2#加热器停止
7	I0. 6	S6	NO	启动按钮	2#加热器起动
8	I1. 1	WK1	NO	温度开关	1#加热器温度控制
9	I1.2	WK2	NO	温度开关	2#加热器温度控制
10	Q4. 0	KM1			电动机主接触器线圈
11	Q4. 1	KM3			电动机星接触器线圈
12	Q4. 2	KM2			电动机角接触器线圈
13	Q5. 1	KM4			1#加热器接触器线圈
14	Q5. 2	KM5			2#加热器接触器线圈

07. 振荡电路 1/时钟脉冲。

当 PLC 运行时自动产生一个时钟频率为 5H₂的脉冲。时钟频率可以通过修改 T1 计时器的时间值来改变。M0.0 是宽度为一个扫描周期的脉冲。它交替触 发 RS 触发器 M10.0。M10.0 是系统所需的时钟脉冲。

序号	PLC 地址	电气符 号	状 态	符号说明	工作原理	
----	--------	----------	--------	------	------	--

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/05812100706 4006035