Our Roadmap

- \bullet What is the maximum flow problem?
- \bullet Ford-Fulkerson algorithm: using a residual network
- Edmonds-Karp algorithm: using BFS paths to run faster
- Matching: another application of maximum flow

Flow Networks in Real-Life!

Adapted from Google Images³

Flow Networks

- Applications of flow network:
	- $\hat{\otimes}$ Traffic flow, electric grid, communication network, assembly line, etc.
- What are their common features?
	- A directed graph
	- Each edge has a **capacity**
		- E.g., bandwidth, cable diameter, road lanes
	- **Flow**: the flowing rate of "material" on an edge
		- E.g., data bits per second, current flow per second, cars per second
	- Source(s): the producer(s) of materials
	- Sink(s): the consumer(s) of materials

Flow Networks: Definitions

- **Flow network** $G = (V, E)$
- *V* is a set of vertices
	- \otimes Producer: a **source** vertex *s*
	- $\hat{\diamond}$ Consumer: a **sin k** vertex *t*
- *E* is a set of edges
	- \bullet Let (u, v) be an edge in E
	- \Diamond It has a **capacity** $c(u, v)$, and a **flow** $f(u, v)$
	- $\hat{\diamond}$ Both capacity and flow are non-negative
	- $\hat{\diamond}$ Only allow directed edges, i.e., cannot have both edges (u, v) and (v, u) in E

Flow Networks: Definitions

Capacity constraint ♦

 \bullet for any edge (u, v) in *E*, $c(u, v) \ge f(u, v) \ge 0$

Flow conservation

- Flow-in equals flow-out
- \bullet for any vertex *u* in $V \{s, t\},$ Σ $v \in V$ $f(v, u) = \sum$ $v \in V$ $f(u, v)$
- \bullet Note: for an edge (u, v) not in E
	- We define $c(u, v) = f(u, v) = 0$

Format:

flow / capacity

6

Flow Networks: Modeling

- Recall that a flow network does not allow both edges (u, v) and (v, u) to be in E
- How do we model a network that contains edges in both directions?
	- Example: edges (v_1, v_2) and (v_2, v_1)
- Just add a dummy vertex on one such edge

Flow Networks: Modeling

- Recall that a flow network has one source s and one sink t
- How do we model a network that has multiple sources and multiple sinks?
- Add a final source *s* and a final sink *t*
	- Link them to original sources and sinks by edges with capacity ∞

The Maximum Flow Problem

- \bullet If I denotes the value of a flow f
	- \bullet $|f|$ = flow out of the source flow into the source

$$
\text{ and } |f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)
$$

 \textcirc Example: $|f| = (12 + 11) - 0 = 23$

\bullet The **maximum flow** problem

• Given a flow network G, with source s and sink t, find the maximum value of $|f|$

Our Roadmap

 \bullet What is the maximum flow problem?

- \bullet Ford-Fulkerson algorithm: using a residual network
- Edmonds-Karp algorithm: using BFS paths to run faster
- Matching: another application of maximum flow

Basic Method

- Basic method for solving the maximum flow problem
	- \textdegree 1. 1. Find a path from *s* to *t*
	- $\approx 2.$ Increase the flow value of the path
	- \textcirc 3. Repeat until no more path can be found
- Does this method compute the maximum flow correctly?
	- Why? Why Not?
- Let's look at an example …

11

Basic Method: Example

\bullet Iteration 1

- \bullet Choose the path $\lt s$, v_1 , v_3 , v_2 , v_4 , t
- $\hat{\diamond}$ How large can the value of the flow become?
- Increase the flow of the path by 4
- \bullet Iteration 2
	- $\hat{\diamond}$ Choose the path $\langle s, v_1, v_3, t \rangle$, its *min. residual capacity* is 12–4=8
	- $\hat{\diamond}$ Increase the flow of the path by 8

flow network G

Basic Method: Example

- \bullet Iteration 3
	- \triangleleft Choose the path $\lt s$, v_2 , v_4 , v_3 , t , its min. residual capacity is 7
	- Increase the flow of the path by 7
- \bullet Iteration 4
	- We cannot choose any path now. Why?

- \bullet The flow value is: 12+7=19. Is this really the maximum flow?
- We need a method to "**cancel**" flow that blocks our way!

Residual Network

- \bullet A residual network $G_f = (G, V, E_f)$
	- Defined by a flow network G and a flow f G $\hat{\otimes}$
- *u 8 : f*

v

v

4/12

4

u

G :

- $\textcolor{blue}{\diamondsuit}$ *Gf* has the same set of vertices as *G*
- $\textcolor{blue}{\diamondsuit}$ E_f contains every edge (u, v) that satisfies $c_f(u, v) > 0$
- \bullet Given an edge (u, v) in E_f , its **residual capacity** $c_f(u, v)$ is the amount of flow allowed to be taken

Augmenting Path

- What is an **augmenting path** p?
	- \bullet A simple path (*no-cycle*) from *s* to *t* in the <u>residual network</u> G_f
- The **residual capacity** of *p* is:
	- $\textcolor{blue}{\diamondsuit}$ $c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is on } p\}$
- \bullet How do we add this flow to the network?

What is the residual capacity of the black path ?

Adding a Flow to Residual Network

residual network G_f

 \bullet Given a flow *f* in G, and a flow *f*' in G_f \triangle **Augmenting flow** $(f \uparrow f')(u, v) =$ $f(u, v) + f'(u, v) - f'(v, u)$ if $(u, v) \in G.E$ 0 otherwise

- \triangleleft Changes of edges on the residual network
	- $\hat{\otimes}$ Reduce res. capacity of a forward edge
	- $\hat{\otimes}$ Increase res. capacity of a reverse edge
	- $\hat{\otimes}$ Delete edges with "zero" res. capacity

residual network G_f (updated)

flow network G (updated) 16

Adding a Flow to Residual Network

residual network G_f

- \diamond Example: edge (v_1, v_2) is a reverse edge
- $\hat{\otimes}$ We have sent 4 units on (v_2, v_1)
- \Leftrightarrow Next, we will send 4 units on (v_1, v_2)
- *Why the cancellation is useful?*

residual network G_f (updated) flow network G (updated) 17 flow network G (updated)

Revisit: Why is the Residual Network Useful?

- Can we add a flow in this flow network G?
	- I n *G,* there is NO path from *s* to *t* now
	- We cannot change any existing flow
- \bullet Can we add a flow in its residual network G_f ?
	- \bullet In G_f , there is still a path $\lt s$, v_2 , v_3 , t
	- $\hat{\otimes}$ The cancellation effect automatically changes some existing flow

Correctness of Augmenting Flow

- \bullet Let *f* be a flow in *G*, and *f*' be a flow in G_f
- \bullet Is it correct to add the flow f' to the flow f in G?
	- The augmenting flow $(f \uparrow f')$ is a flow in G, and its flow value is: $|f \uparrow f'| = |f| + |f'|$
- In the appendix, we will show that:
	- Flow property: Capacity constraint
	- Flow property: Flow conservation
	- Flow value: $|f \uparrow f'| = |f| + |f'|$

19

Ford-Fulkerson Algorithm

Augmenting flow

$$
(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)
$$

0

v, *u*) if $(u, v) \in G.E$ otherwise

Ford-Fulkerson(*G, s, t*)

- 1 for each edge $(u, v) \in G.E$
- \mathcal{L} $f(u, v) \leftarrow 0$
- 3 while there exists a path *p* from *s* to *t* in the residual network G_f
- 4 $c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \text{ is on } p\}$
- 5 for each edge (u, v) on p
- 6 if $(u, v) \in G.E$

$$
f(u, v) \leftarrow f(u, v) + c_f(p)
$$

8 else

7

$$
9 \qquad f(v, u) \leftarrow f(v, u) - c_f(p)
$$

Idea

- Lines 1-2: set the flow to zero
- \bullet Line 3: find a path from *s* to *t* in G_f
- Line 4: compute the path's flow value
- Lines 6-7: add the flow for an actual edge in *G*
- Lines 8-9: cancel the flow for a reverse edge
- Stop when there is no path from *s* to *t* in *Gf*
	- See the *correctness proof* in textbook

Ford-Fulkerson Algorithm

Ford-Fulkerson(*G*, *s*, *t*) Time complexity

- 1 for each edge $(u, v) \in G.E$
- 2 $f(u, v) \leftarrow 0$
- 3 while there exists a path *p* from *s* to *t* in the residual network G_f

4
$$
c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \text{ is on } p\}
$$

- 5 for each edge (u, v) on p
- 6 if $(u, v) \in G.E$

7
$$
f(u, v) \leftarrow f(u, v) + c_f(p)
$$

8 else

9

 $f(v, u) \leftarrow f(v, u) - c_f(p)$

- To find a path *p* by graph traversal, it takes $O(|V| + |E|) = O(|E|)$ time
- Each outer loop (Lines 3-9) increases the flow value by at least 1
- \bullet Let $|f^*|$ be the maximum flow value
- Total time: O(| *E*| |*f ** |)

Ford-Fulkerson Algorithm: Example Iteration 1

- \bullet 1. Choose a path from *s* to *t*, on the residual network G_f
	- E.g., the path $\langle s, v_2, v_1, v_3, t \rangle$, shown in bold type
- 2. The minimum residual capacity $c_f(u, v)$ on the path is 4
- 3. Update the flow on *G*
	- The flow on G_f will then be automatically updated

Ford-Fulkerson Algorithm: Example

Iteration 2

 \bullet 1. Choose a path from *s* to *t*, on the residual network G_f

 \bullet E.g., the path $\lt s$, v_1 , v_3 , t

- 2. The minimum residual capacity is 8
- 3. Update the flow

Ford-Fulkerson Algorithm: Example

Iteration 3

 \bullet 1. Choose a path from *s* to *t*, on the residual network G_f

 \bullet E.g., the path $\lt s$, v_1 , v_2 , v_4 , t

- 2. The minimum residual capacity is 4
- 3. Update the flow *v 1 s t 12/16 v 3 12/12 0/4 0/9 12/20 v 1 s t 8 v 3 12 4 9 12 8 8 flow cancellation* 24 residual network G_f G_f flow network G *What will happen next ? v 2 v 4 4/13 4/14 0/7 4/4 v 2 v 4 9 14 7 4 4*

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如 要下载或阅读全文,请访问:[https://d.book118.com/06502414231](https://d.book118.com/065024142311011224) [1011224](https://d.book118.com/065024142311011224)