Our Roadmap

- What is the <u>maximum flow</u> problem?
- ✤ Ford-Fulkerson algorithm: using a <u>residual network</u>
- Matching: another application of maximum flow

Flow Networks in Real-Life!

Adapted from Google Images

3

Flow Networks

- Applications of flow network:
 - Traffic flow, electric grid, communication network, assembly line, etc.
- What are their common features?
 - A directed graph
 - ♦ Each edge has a capacity
 - E.g., bandwidth, cable diameter, road lanes
 - ✤ Flow: the flowing rate of "material" on an edge
 - E.g., data bits per second, current flow per second, cars per second
 - Source(s): the producer(s) of materials
 - Sink(s): the consumer(s) of materials

Flow Networks: Definitions

- Flow network G = (V, E)
- \diamond V is a set of vertices
 - Producer: a source vertex s
 - Consumer: a **sink** vertex *t*
- \bullet E is a set of edges
 - ♦ Let (u, v) be an edge in *E*
 - ♦ It has a **capacity** c(u, v), and a **flow** f(u, v)
 - Both capacity and flow are non-negative
 - Only allow directed edges, i.e., cannot have both edges (u, v) and (v, u) in E

Flow Networks: Definitions

Capacity constraint

♦ for any edge (u, v) in E,
 c(u, v) ≥ f(u, v) ≥ 0

Flow conservation

- Flow-in equals flow-out
- ◊ for any vertex u in V {s, t},
 Σ_{v∈V} f(v, u) = Σ_{v∈V} f(u, v)
- Note: for an edge (u, v) not in E
 - We define c(u, v) = f(u, v) = 0

Let's check the flow conservation at vertex v₂

Format:

Flow Networks: Modeling

- Recall that a flow network does not allow both edges
 (u, v) and (v, u) to be in E
- How do we model a network that contains edges in both directions?
 - Example: edges (v_1, v_2) and (v_2, v_1)
- Just add a dummy vertex on one such edge

Flow Networks: Modeling

- Recall that a flow network has one source s and one sink t
- How do we model a network that has multiple sources and multiple sinks?
- Add a final source s and a final sink t
 - Link them to original sources and sinks by edges with capacity ∞

The Maximum Flow Problem

- ♦ | f | denotes the value of a flow f
 - ⊗ |*f*| = flow out of the source flow into the source

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

♦ Example: |f| = (12 + 11) - 0 = 23

♦ The maximum flow problem

• Given a flow network G, with source s and sink t, find the maximum value of |f|

Our Roadmap

- What is the <u>maximum flow</u> problem?
- ✤ Ford-Fulkerson algorithm: using a <u>residual network</u>
- ♦ Edmonds-Karp algorithm: using BFS paths to <u>run faster</u>
- Matching: another application of maximum flow

Basic Method

- Basic method for solving the maximum flow problem
 - \diamond 1. Find a path from *s* to *t*
 - ♦ 2. Increase the flow value of the path
- - Why? Why Not?
- ♦ Let's look at an example ...

11

Basic Method: Example

Iteration 1

- ♦ Choose the path $\langle s, v_1, v_3, v_2, v_4, t \rangle$
- How large can the value of the flow become?
- Increase the flow of the path by 4
- Iteration 2
 - Choose the path $\langle s, v_1, v_3, t \rangle$, its *min. residual capacity* is 12–4=8
 - Increase the flow of the path by 8

flow network G

Basic Method: Example

- Iteration 3
 - ♦ Choose the path $\langle s, v_2, v_4, v_3, t \rangle$, its min. residual capacity is 7
 - Increase the flow of the path by 7
- Iteration 4
 - We cannot choose any path now. Why?

- The flow value is: 12+7=19. Is this really the maximum flow?
- ♦ We need a method to "cancel" flow that blocks our way!

Residual Network

- ♦ A residual network $G_f = (G.V, E_f)$
 - $\diamond\,$ Defined by a flow network G and a flow f
 - G_f has the same set of vertices as G

- ♦ E_f contains every edge (u, v) that satisfies $c_f(u, v) > 0$
- ♦ Given an edge (u, v) in E_f , its residual capacity $c_f(u, v)$ is the amount of flow allowed to be taken

Augmenting Path

- What is an **augmenting path** *p* ?
 - ♦ A simple path (*no-cycle*) from s to t in the <u>residual network</u> G_f
- The **residual capacity** of p is:
- How do we add this flow to the network?

What is the residual capacity of the black path ?

Adding a Flow to Residual Network

residual network G_f

Given a flow f in G, and a flow f' in G_f Augmenting flow $(f \uparrow f')(u, v) =$ f(u, v) + f'(u, v) - f'(v, u) if $(u, v) \in G.E$ 0 otherwise

- Changes of edges on the residual network
 - Reduce res. capacity of a forward edge
 - ♦ Increase res. capacity of a reverse edge
 - Delete edges with "zero" res. capacity

residual network G_f (updated)

flow network G (updated) ¹⁶

Adding a Flow to Residual Network

residual network G_f

- Cancellation: flow increase on a reverse edge (i.e., edge in G_f but not in G)
 - Example: edge (v_1, v_2) is a reverse edge \otimes
 - We have sent 4 units on (v_2, v_1)
 - Next, we will send 4 units on (v_1, v_2)
- Why the cancellation is useful?

residual network G_f (updated)

17 flow network G (updated)

Revisit: Why is the Residual Network Useful?

- Can we add a flow in this flow network G?
 - In *G*, there is NO path from *s* to *t* now
 - We cannot change any existing flow
- Can we add a flow in its residual network G_f ?
 - ♦ In G_f , there is still a path <s, v_2 , v_3 , t>
 - The cancellation effect automatically changes some existing flow

Correctness of Augmenting Flow

- ◆ Let *f* be a flow in *G*, and *f* ' be a flow in G_f
- Is it correct to add the flow f to the flow f in G?
 - ♦ The augmenting flow $(f \uparrow f')$ is a flow in *G*, and its flow value is: $|f \uparrow f'| = |f| + |f'|$
- In the appendix, we will show that:
 - Flow property: Capacity constraint
 - Flow property: Flow conservation
 - ♦ Flow value: $|f \uparrow f'| = |f| + |f'|$

19

Ford-Fulkerson Algorithm

Augmenting flow

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)$$

0

Ford-Fulkerson(*G*, *s*, *t*)

- 1 for each edge $(u, v) \in G.E$
- $2 \qquad f(u,v) \leftarrow 0$
- 3 while there exists a path *p* from *s* to *t* in the residual network G_f
- 4 $c_f(p) \leftarrow \min\{ c_f(u, v) : (u, v) \text{ is on } p \}$
- 5 for each edge (u, v) on p
- 6 if $(u, v) \in G.E$

$$f(u, v) \leftarrow f(u, v) + c_f(p)$$

8 else

7

9
$$f(v, u) \leftarrow f(v, u) - c_f(p)$$

Idea

- Lines 1-2: set the flow to zero
- Line 3: find a path from *s* to *t* in G_f
- Line 4: compute the path's flow value

if $(u, v) \in G.E$

otherwise

- Lines 6-7: add the flow for an actual
 edge in G
- Lines 8-9: cancel the flow for a reverse edge
- Stop when there is no path from *s* to *t* in G_f
 - See the *correctness proof* in textbook

Ford-Fulkerson Algorithm

Ford-Fulkerson(*G*, *s*, *t*)

- 1 for each edge $(u, v) \in G.E$
- $2 \qquad f(u,v) \leftarrow 0$
- 3 while there exists a path p from s to tin the residual network G_f

4
$$c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \text{ is on } p\}$$

- 5 for each edge (u, v) on p
- 6 if $(u, v) \in G.E$

7
$$f(u, v) \leftarrow f(u, v) + c_f(p)$$

8 else

9

 $f(v, u) \leftarrow f(v, u) - c_f(p)$

Time complexity

- To find a path *p* by graph traversal, it takes O(|V| + |E|) = O(|E|) time
- Each outer loop (Lines 3-9)
 increases the flow value by at least 1
- Let $|f^*|$ be the maximum flow value
- Total time: O($|E| |f^*|$)

Ford-Fulkerson Algorithm: Example Iteration 1

- ♦ 1. Choose a path from *s* to *t*, on the residual network G_f
 - ♦ E.g., the path <*s*, v_2 , v_1 , v_3 , *t*>, shown in bold type
- ♦ 2. The minimum residual capacity $c_f(u, v)$ on the path is 4
- \diamond 3. Update the flow on *G*
 - The flow on G_f will then be automatically updated

Ford-Fulkerson Algorithm: Example

Iteration 2

♦ 1. Choose a path from *s* to *t*, on the residual network G_f

♦ E.g., the path $\langle s, v_1, v_3, t \rangle$

- ♦ 2. The minimum residual capacity is 8
- ♦ 3. Update the flow

Ford-Fulkerson Algorithm: Example

Iteration 3

♦ 1. Choose a path from *s* to *t*, on the residual network G_f

♦ E.g., the path <*s*, v_1 , v_2 , v_4 , *t*>

- ♦ 2. The minimum residual capacity is 4
- flow cancellation 3. Update the flow 12 8 12/20 8 12/16, 0/9 12 9 0/4 S 7 0/7 9 4/13 4/4 14 4/14 residual network G_f flow network G What will happen next? 24

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如 要下载或阅读全文,请访问: <u>https://d.book118.com/06502414231</u> <u>1011224</u>