

研究背景和意义

低温绝热气瓶的应用

低温绝热气瓶广泛应用于液化天然气、液氧、液氮等低温液体的储存和运输,其真空寿命直接影响气瓶的使用安全和经济效益。

真空寿命的重要性

真空寿命是低温绝热气瓶的重要性能指标,它决定了气瓶的绝热性能和使用寿命。随着使用时间的延长,真空度会逐渐下降,导致气瓶绝热性能下降,甚至引发安全事故。

研究意义

通过模拟试验研究低温绝热气瓶的真空寿命,可以为其设计、制造和使用提供理论依据和技术支持,提高气瓶的安全性和经济性。

国内外研究现状及发展趋势

国内研究现状

国内在低温绝热气瓶的研究方面起步较晚,但近年来发展迅速。目前,国内主要研究单位包括高校、科研院所和企业,研究方向涉及气瓶材料、制造工艺、绝热性能、安全性等方面。

国外研究现状

国外在低温绝热气瓶的研究方面起步较早,技术相对成熟。主要研究机构包括美国、欧洲和日本的知名企业和高校,研究方向涉及气瓶设计、制造工艺、绝热性能、安全性等方面。

发展趋势

随着液化天然气等低温液体的广泛应用,低温绝热气瓶的需求不断增加,对其性能和安全性的要求也越来越高。未来,低温绝热气瓶的研究将更加注重材料创新、工艺优化和智能化发展。

研究目的

本研究旨在通过模拟试验研究低温绝热气瓶的真空寿命,探究其影响因素和变化规律,为气瓶的设计、制造和使用提供理论依据和技术支持。

研究内容

本研究将采用理论分析和试验验证相结合的方法,对低温绝热气瓶的真空寿命进行深入研究。具体内容包括:建立低温绝热气瓶真空寿命的数学模型;设计并搭建模拟试验系统;开展不同工况下的模拟试验;分析试验数据,探究真空寿命的影响因素和变化规律;提出优化气瓶设计和制造工艺的建议。

材料性能对真空寿命的影响

材料热导率

热导率越低,绝热性能越好,真空寿命越长

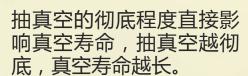
材料放气率

放气率越低,真空度保持时间越长,真空寿命越长。

材料机械性能

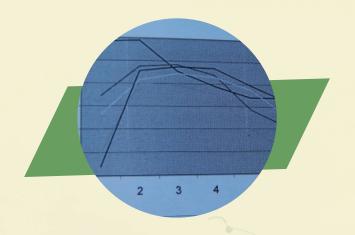
良好的机械性能可以保证气瓶在运输和使用过程中的安全性,进而保证真空寿命。

制造工艺对真空寿命的影响


焊接工艺

焊接质量直接影响气瓶的密封性,高质量的焊接可以保证真空度的长期稳定性。

抽真空工艺


检漏工艺

检漏的准确性和灵敏度可以保证气瓶在使用前的真 空度符合要求,进而保证 真空寿命。

使用环境对真空寿命的影响

温度变化

频繁的温度变化会加速绝 热材料的老化,降低真空 寿命。

湿度变化

湿度过高会导致绝热材料 吸湿,降低绝热性能,缩 短真空寿命。

机械振动

长期的机械振动会导致气 瓶疲劳破坏,影响真空寿命。

试验样品的选择和准备

样品类型

选择具有代表性的低温绝热气瓶,如液氧、液氮等常用气体储存设备。

样品数量

根据试验需求和统计分析要求,确定合适的样品数量。

样品状态

确保所选气瓶处于良好状态,无损坏、 泄漏等问题,并进行必要的清洗和干 燥处理。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/068112072044006076