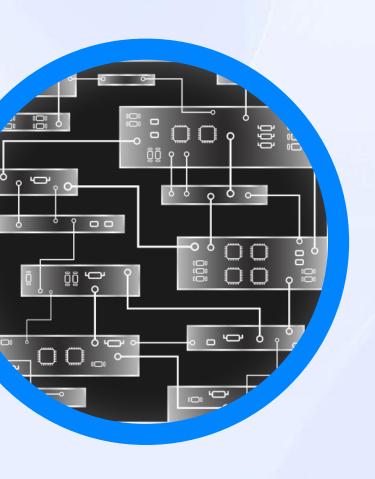
基于DBN特征提取的模拟电路早期 故障诊断方法

汇报人: 2024-01-15



- ・引言
- · DBN特征提取原理及算法
- ・模拟电路早期故障类型及诊断方法
- ・实验设计与实现
- ・结果分析与讨论
- ・结论与展望

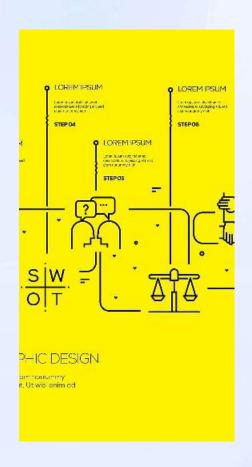
01 引言

研究背景与意义

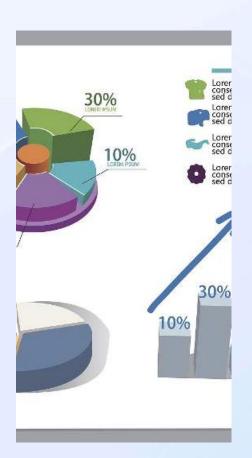
模拟电路故障诊断的重要性

随着电子设备的广泛应用,模拟电路故障诊断对于保障设备正常运行、提高生产效率具有 重要意义。

传统故障诊断方法的局限性

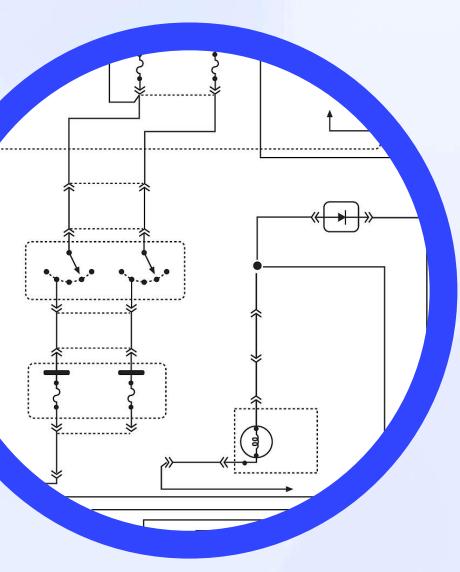

传统故障诊断方法通常基于经验或规则,对于复杂模拟电路的故障诊断效果有限。

基于DBN特征提取的早期故障诊断方法的优势


DBN(深度信念网络)是一种深度学习模型,能够从数据中自动提取有用特征,对于早期故障诊断具有较高的准确性和效率。

国内外研究现状及发展趋势

国内外研究现状


目前,国内外学者在模拟电路故障诊断方面已经取得了一定的研究成果,包括基于信号处理、模式识别等方法的研究。

发展趋势

随着深度学习技术的不断发展,基于深度学习的模拟电路故障诊断方法将成为未来研究的热点。

研究目标

01

02

03

本文旨在研究基于DBN特征提取的模拟电路早期故障诊断方法, 提高故障诊断的准确性和效率。

研究内容

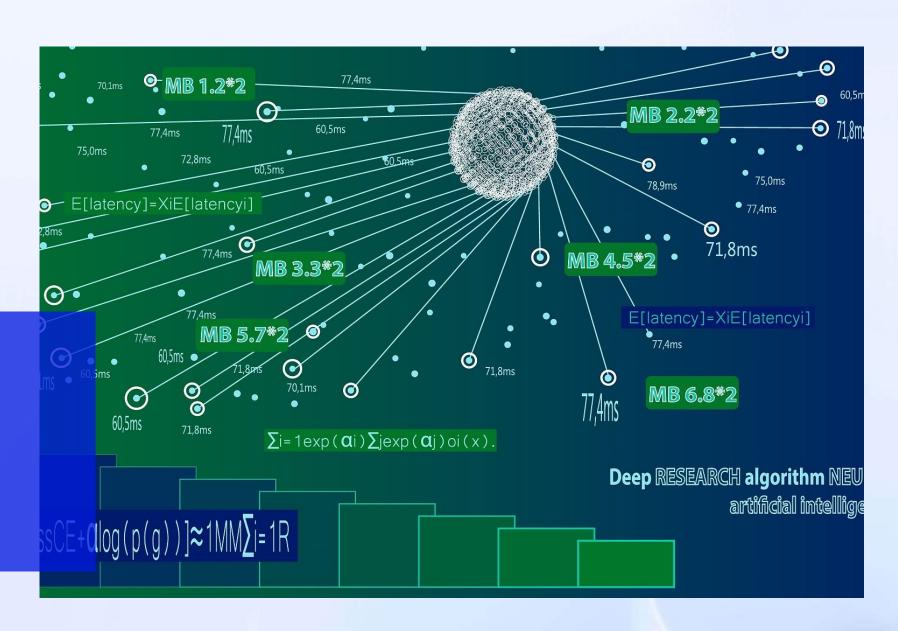
首先,构建模拟电路故障数据集;其次,利用DBN模型进行特征提取;最后,设计分类器实现故障分类和诊断。

研究方法

采用理论分析和实验验证相结合的方法,对提出的方法进行性能评估。

02

DBN特征提取原理及算法


深度学习基本原理

神经网络基础

深度学习是神经网络的一种延伸,通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

前向传播与反向传播

神经网络通过前向传播计算输出结果, 再通过反向传播根据误差调整网络参数,使得输出结果更加接近真实值。

受限玻尔兹曼机(RBM)

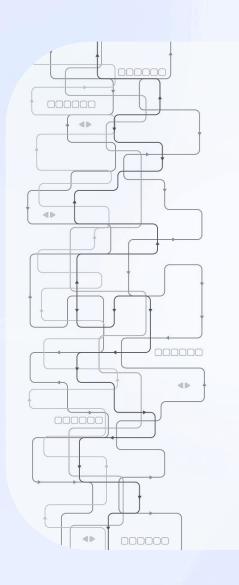
DBN的基本组成单元是RBM,它是一种可通过输入数据集学习概率分布的随机生成神经网络。

堆叠RBM

多个RBM堆叠起来构成DBN,其中每个RBM的隐层作为下一个RBM的可见层, 最后一个RBM的输出作为整个DBN的输出。

DBN训练过程及优化方法

逐层贪心训练


DBN采用逐层贪心的方式来训练网络,即每次只训练一层RBM,将其训练结果作为下一层的输入,以此类推。

优化方法

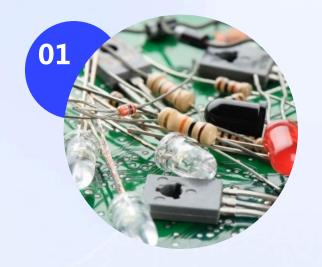
在训练过程中,可采用一些优化方法来提高训练效率和效果,如使用动量项、学习率衰减、正则化等。

特征提取算法设计

基于DBN的特征提取

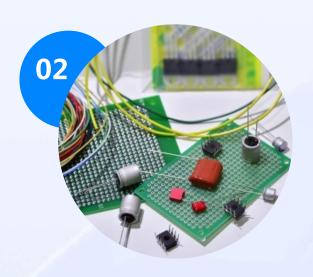
利用训练好的DBN模型,将输入数据通过网络进行前向传播,得到每一层的输出作为该数据的特征表示。

特征选择

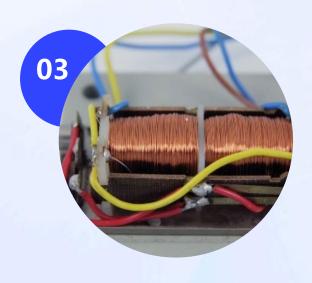

从提取的特征中选择与目标任务相关的特征,去除冗余和无 关的特征,以降低特征维度和提高分类器性能。

03

模拟电路早期故障类型及诊断方法


常见模拟电路早期故障类型

元器件参数漂移



由于元器件老化、温度变 化等原因导致元器件参数 发生变化,进而影响电路 性能。

接触不良

电路中元器件与导线、导 线与导线之间连接不良, 导致信号传输受阻或产生 噪声。

电源故障

电源电压波动、电源噪声 等问题,影响电路正常工 作。

传统诊断方法及局限性

1

基于信号处理的诊断方法

通过分析电路输出信号的频域、时域特征来判断故障类型,但难以处理非线性、非平稳信号。

2

基于知识库的诊断方法

通过建立电路故障知识库,将故障现象与故障原因进行匹配,但知识库更新困难,且难以覆盖所有故障类型。

3

基于传统机器学习的诊断方法

通过提取电路特征并训练分类器进行故障诊断,但需要手动提取特征,且对于复杂电路的诊断效果有限。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/077103110021006120