

The ACM Two-Year College Education Committee

Robert D. Campbell, Rock Valley College

Committee Chair

Elizabeth K. Hawthorne, Union County College

Karl J. Klee, Alfred State College

The ACM Two-Year College Education Committee gratefully acknowledges the

outstanding contributions to the development of this report provided by our

colleagues, luding Peter Drexel, Plymouth State University; Becky Grasser,

Lakeland Community College; Norma E. Hall, Manor College; John Impagliazzo,

Hofstra University; Andrew McGettrick, University of Strathclyde, United

Kingdom; Eric Roberts, Stanford University, as well as the previous work by the

joint ACM/IEEE-CS Software Engineering Task in the development of the

undergraduate report Software Engineering 2004: Curriculum Guidelines for

Undergraduate Degree Programs in Software Engineering.

This material is based in part upon work supported by the National Science

Foundation under Grant No. .

Computing Curricula 2005:

Guidelines for Associate-Degree

Transfer Curriculum in

Software Engineering

The ACM Two-Year College Education Committee

and

The Joint Task on Software Engineering

Association for Computing Machinery

IEEE Computer Society

hold this page for copyright information

Table of Contents

Section 1: The Goal of This Report ... 1

Section 2: The Nature of Software Engineering .. 3

Section 3: The Software Engineering Transfer Curriculum Track ... 5

Section 4: Additional Considerations .. 9

Bibliography .. 11

Appendix A: Computer Science Imperative-First Course Descriptions ... 12

Appendix B: Computer Science Objects-First Course Descriptions .. 27

Appendix C: Discrete Mathematics Course Descriptions ... 41

Appendix D: ACM TYC Taxonomy of Learning Processes ... 49

List of Tables

Table 1: Software Engineering Transfer Curriculum Track.. 5

Table 2: CS 101I, Programming Fundamentals ... 21

Table 3: CS 102I, the Object-Oriented Paradigm .. 24

Table 4: CS 103I, Data Structures and Algorithms .. 26

Table 5: CS 101O, Introduction to Object-Oriented Programming .. 36

Table 6: CS 102O, Objects and Data ion .. 39

Table 7: CS 103O, Algorithms and Data Structures... 42

Table 8: CS 105, Discrete Structures I .. 46

Table 9: CS 106, Discrete Structures II .. 47

Table 10: ACM TYC Taxonomy of Learning Processes ... 49

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

Section 1: The Goal of This Report

This report provides guidelines for a software engineering curriculum track within the

computer science degree program at associate-degree gr g institutions. The report

focuses on a program of study designed for students intending to transfer into

baccalaureate programs awarding software engineering degrees. This report is

specifically designed to promote articulation by linking software engineering curriculum

in two-year colleges with that in baccalaureate institutions.

There are three major recent curriculum reports that provide foundation for this work.

• Computer Science curricula guidelines for undergraduate programs were finalized

and approved in 2001, and were published under the title Computing Curricula

2001: Computer Science. This work was the result of the Joint Task on

Computing Curricula 2001 established by the Institute of Electrical and

Electronics Engineers Computer Society (IEEE-CS) and the Association for

Computing Machinery (ACM). That report, together with ac ing

materials, can be found at puter.org/education/.

• Computer Science curricula guidelines for associate-degree gr g institutions

were finalized and approved in 2003, and were published under the title

Computing Curricula 2003: Guidelines for Associate-Degree Curricula in

Computer Science. This work was the result of the IEEE-CS/ACM Joint Task

 on Computing Curricula 2001 and the ACM Two-Year College Education

Committee. That report, together with ac ing materials, can be found at

.

The body of knowledge for associate-degree Computer Science is defined by the

following areas: Algorithms and Complexity, Architecture and Organization,

Discrete Structures, Graphics and Visual Computing, Human-Computer

In ction, Information Management -Centric Computing, Operating

Systems, Programming Fundamentals, Programming Languages, Software

Engineering, and Social and Professional Issues.

• Software Engineering curricula guidelines for undergraduate programs were

finalized and approved in 2004, and were published under the title Software

Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs

in Software Engineering. This work was the result of a joint task of the

ACM and IEEE-CS. That report, together with ac ing materials, can be

found at puter.org/education/.

This report, Computing Curricula 2005: Guidelines for Associate-Degree Transfer

Curriculum in Software Engineering, shares common goals and outcomes with the three

above-mentioned curriculum reports. In the United States, as many as one-half of

baccalaureate graduates initiate their studies in associate-degree gr g institutions. For

this reason, it is important to outline a software engineering curriculum track that can be

initiated in the two-year college setting, specifically designed for seamless transfer into

1

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

an upper-division program. This report recommends a program of study that specifically

fulfills this requirement. However, it must be noted that the aims and objectives for

software engineering undergraduate degree programs can vary from one institution to

another for a variety of reasons. Ultima y, students are best served when institutions

establish well defined articulation agreements between associate-degree and

undergraduate-degree programs.

It is critical to note that two-year college students must complete the coursework in its

entirety to well-defined competency points to ensure success in the subsequent software

engineering coursework at the upper division level. For some students, this may require

more than two years of study at the associa evel. Particular attention must be paid to

matching individual students to appropriate programs of study, taking into account each

student’s career goals and aspirations, talents and abilities, and life constraints such as

time, finances, and geography.

By basing this report on three recently published sets of international curricula

guidelines, the following goals are fulfilled:

• The use of computer science and mathematics courses from the Computing

Curricula 2003: Guidelines for Associate-Degree Curricula omputer Science

report enables two-year colleges in the United States to orporate a software

engineering track easily into an existing computer science transfer degree

program, irrespective of the specific department offering the degree.

The orporation of the software engineering philosophy, concepts, coursework

and outcomes from the Software Engineering 2004: Curriculum Guidelines for

Undergraduate Degree Programs in Software Engineering report helps to

properly prepare students and facilitates seamless articulation.

The report can be used to implement an introductory software engineering

curriculum ountries outside the United States whose institutions have missions

consistent with the US two-year college model. Using the Computing Curricula

2003: Guidelines for Associate-Degree Curricula omputer Science report as a

, students pursuing computer science could easily prepare for studies in

software engineering should they decide to alter their career ns.

•

•

2

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

Section 2: The Nature of Software Engineering

Software engineering is more than just coding – it involves creating high-quality reliable

products in a systematic, controlled, and efficient manner, with important emphases on

ysis and evaluation, specification, design, and evolution. Many software products are

among the most complex of man-made systems, requiring programming techniques and

processes that scale well to the development of large applications, and that address the

ongoing demand for new and evolved software, all within acceptable timeframes and

budgets. For these reasons, software engineering requires both the ytical and

descriptive tools developed omputer science and the rigor that the engineering

disciplines bring to the reliability and trustworthiness of the artifacts that software

producers design and develop.

In particular, the field of software engineering:

•

•

Must be viewed as a discipline with stronger ties to computer science than it has

to other engineering fields.

Must share common characteristics with other engineering disciplines, luding

tative measurement, structured decision making, effective use of tools, and

artifact reuse.

Must apply engineering methods and practices to the development of software,

with special emphasis on the development of large software systems.

Must integrate the pr iples of discrete mathematics and computer science with

engineering methodologies.

Must utilize ion and modeling, and effective change management.

Must lude the quality control concepts of manufacturing process design.

Must emphasize communication skills, teamwork skills, and professional

pr iples and best practices.

•

•

•

•

•

Given then that software engineering is built upon the foundations of both computer

science and engineering, the software engineering curriculum can be approached from

either a computer science-first or software engineering-first . There is clearly

merit to each approach, and indeed the Software Engineering 2004: Curriculum

Guidelines for Undergraduate Degree Programs in Software Engineering report provides

two dist t introductory course sequences (“CS-first” and “SE-first”) that in

deliver students to the same point of preparation for more advanced study in the upper

division.

While some suggest that the engineering-first approach better ensures that students

develop a proper sense of the field in the context of engineering, the computer science-

first approach is mu ore prevalent, and for many reasons likely to remain so. This

report is based on the computer science-first approach for the following reasons:

• Students with limited programming experience may not have the necessary

background or context for the study of software engineering concepts in their

introductory courses.

The current guidelines for foundation computer science curricula, which have

greatly influenced the coursework now in ce at many institutions, lude

concepts and programming paradigms that must be mastered through study and

•

3

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

practice. Once in ce, these skills can be honed and refined in subsequent

coursework, luding the study of other software engineering topics.

For those institutions conducting computer science curricula based on current

ACM standards, the software engineering curriculum track can be implemented

easily. Implementation issues are mu ore manageable, luding the

important considerations that must be given to course scheduling, faculty

preparation, student loads, hardware and software resources, instructional

materials and curriculum development.

•

4

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

Section 3: The Software Engineering Transfer Curriculum Track

The Computing Curricula 2003: Guidelines for Associate-Degree Curricula omputer

Science report details a variety of paradigms for introductory computer science curricula,

together with computer science and mathematics course descriptions. Two of these

paradigms – Imperative-first and Objects-first – are suitable in a software engineering

curriculum. The tables below outline a two-year software engineering curriculum track

built upon each of those two computer science paradigms. The descriptions of the

computer science and mathematics courses identified below are detailed in Appendices

A, B, and C; the description for the SE201 software engineering course is detailed below.

The use of computing and mathematics courses, as well as overall curriculum structure,

from the Computing Curricula 2003: Guidelines for Associate-Degree Curricula in

Computer Science report enables two-year colleges to orporate a software engineering

curriculum track easily into an existing computer science transfer degree program.

Students who complete this track could reasonably expect to transfer into baccalaureate

software engineering programs consistent with the Software Engineering 2004:

Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering.

Year One
Imperative-First Paradigm

Object-First Paradigm

Year Two
Imperative-First Paradigm

Object-First Paradigm

Table 1: Software Engineering Transfer Curriculum Track

5

Third Semester Semester

CS103O (Algorithms and Data Structures)

SE201 (Introduction to Software

Engineering)

CS106 (Discrete Structures II)

Third Semester Semester

CS103I (Data Structures and Algorithms)

SE201 (Introduction to Software

Engineering)

CS106 (Discrete Structures II)

First Semester Second Semester

CS101O (Introduction to Object-Oriented

Programming)

CS102O (Objects and Data ion)

 CS105 (Discrete Structures I)

First Semester Second Semester

CS101I (Programming Fundamentals) CS102I (The Object-Oriented Paradigm)
 CS105 (Discrete Structures I)

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

Three things should be noted after review of Table 1 above:

• The software engineering track fits very well into the computer science transfer

degree program, and the SE201 course can simply take the ce of a suggested

second-year elective course.

There is no impact on or addition to a student’s initial computer science sequence

of study.

Students interested in the field of software engineering can simply be added to the

existing computer science and mathematics courses.

•

•

The following information details the SE201 course description, syllabus, student

performance objectives, and sample laboratory experiences. As described herein, this

course is consistent with the SE201 course described in the Software Engineering 2004:

Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering

report. This will assist in the development of articulation agreements and student transfer

between associate-degree gr g institutions and baccalaureate-degree gr g

institutions.

6

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

SE201 Introduction to Software Engineering

This core course introduces the basic pr iples and concepts of software engineering and

provides the necessary foundation for subsequent SE courses at the upper division level.

Topics lude: basic terminology and concepts of software engineering; system

requirements, modeling, and testing; object oriented ysis and design using UML;

frameworks and APIs; -server architecture; user interface technology; and the

ysis, design and programming of simple servers and s.

Prerequisite: CS102I or CS102O

Student Performance Objectives:

Upon completion of this course, students will be able to:

• Develop clear, concise, and sufficiently formal requirements for extensions to an

existing system, based on the true needs of users and other stakeholders.

Identify software engineering tools, their uses, and benefits derived from the use

of Compu ided Systems Engineering (CASE).

Apply design pr iples and patterns on reusable technology while designing and

implementing simple distributed systems, and differentiat ween structured

design and object-oriented design.

Create UML class diagrams whi odel aspects of the and the software

architecture, and UML sequence diagrams and state machines that correctly

model system behavior.

Implement simple graphical user interfaces for a system, and apply simple

measurement techniques to software.

Demonstrate an appreciation for the breadth of software engineering, luding

the role of a software engineer and the associated ethical considerations.

•

•

•

•

•

Syllabus:

•

•

•

•

•

•

Software engineering and its ce as an engineering discipline.

Review of the pr iples of object orientation.

Reusable as a basis for software engineering: frameworks and APIs.

Introduction to -server computing.

Requirements ysis.

UML class diagrams and object-oriented ysis; introduction to formal

modeling using OCL.

Examples of building class diagrams to model various s.

Design patterns (ion-occurrence, composite, yer-role, singleton,

observer, delegation, façade, adapter, observer, etc.).

Use cases and user-centered design.

Representing software behavior: sequence diagrams, state machines, activity

diagrams.

General software design pr iples: decomposition, decoupling, cohesion, reuse,

reusability, portability, testability, flexibility, etc.

Software architecture: distributed architectures, pipe-and-filter, model-view-

controller, etc.

Introduction to testing and project management.

•

•

•

•

•

•

•

7

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

Sample labs and assignments:

• Evaluating the performance of various simple software designs.

•

•

•

•

Adding features to an existing system.

Testing a system to verify conformance to test cases.

Building a GUI for an application.

Numerou ercises building models in UML, particularly class diagrams and

state machines.

Develo and presenting a simple set of requirements (to be done as a team) for

some innovative server application of very small size.

Implementing the above, using reusable technology to the greatest extent possible.

•

•

Additional teaching considerations:

• This course is a good starting point for exposing students to modera y sized

existing systems. With such systems, they can learn and practice the essential

skills of reading and understanding code written by others. Students should write

code in the context of a particular , for example the biological, physical,

mathematical or chemical sciences or even wider spectra such as game

programming, business applications, and graphics and animation.

It is assumed that studen tering this course will have had little coverage of

software engineering concepts previously, but have had two courses that give

them a very good background in programming and basic computer science. It is

suggested th ore subset of UML be taught, rather than trying to cover all

features.

It may be challenging for instructors to convey the nature of SE to students;

however, this challenge may be addressed through strategies such as field trips to

businesses and industries that utilize large software systems, guest lectures by

developers and users of large software systems, and discussions about embedded

systems in everyday life luding ATMs, wireless devices, s, PDAs,

portable MP3 yers, and computer games.

•

•

8

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

Section 4: Additional Program Considerations

The mathematics of discrete structures underlies all computing fields, luding software

engineering. Hence, the mathematics courses CS105-106 (Discrete Structures I, II)

identified in this report are core to the software engineering curriculum track. While

these courses are sufficient to support the CS101-102-103-SE201 curriculum described in

this report, they can be meaningfully supplemented by an additional course devoted to

statistics and empirical methods. Not dissimilar from a statistics course offered

frequently in the two-year college setting, such a course may be necessary for the upper

division software engineering curriculum at some transfer institutions. The Software

Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in

Software Engineering report identifies this potential need and addresses it through a

course referred to as MA271 (Statistics and Empirical Methods). The course description

reads “Applied probability and statistics in the context of computing; experiment design

and the ysis of results; taught using examples from software engineering and other

computing disciplines.” It should also be noted that in order to fulfill articulation

agreements with some transfer institutions students may also need to complete a calculus

sequence (or additionally, linear algebra and/or differential equations).

Laboratory science courses such as physics, chemistry and biology provide students with

content knowledge and experience with the scientific method (summarized as

formulating problem statements and hypothesizing, designing and conducting

experiments, observing and collecting data, yzing and reasoning, and evaluating and

concluding). Program requirements of this nature provide students with a foundation

should they later develop software in those scientific s. It should be noted that in

some instances students may be required to complete a laboratory science course

sequence as part of this degree program in order to gain entry into the upper division.

Some two-year colleges offer introductory engineering courses, providing an overview of

the many individual disciplines constituting the world of engineering. These courses

often engage students in stimulating activities that peak their interests and set the stage

for career choices in such fields. Students pursuing software engineering degree

programs would strengthen their insights into engineering by completing such

coursework.

In their upper division work, students will focus their emerging software engineering

skills in a particular application area of interest to them. The foundation for that selection

may be laid in various elective courses that students pursue in the lower division. These

could lude courses in business and finance; biology and health sciences; mathematics

and statistics; and information technology.

Effective oral and written communications abilities are of critical importance to software

engineering professionals; therefore, students should be required to complete

communications courses as part of this degree program. These skills must be identified,

developed, nurtured and orporated throughout a software engineering curriculum.

Students must master effective writing, speaking, and listening abilities, and then

consistently demonstrate those talents in a variety of settings, luding formal and

9

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

informal, large group and one-on-one, technical and non-technical, point and counter-

point.

Colleges will ensure that degree programs ultima y fulfill all general education and

related requirements arising from institutional, state, and regional accreditation

guidelines. The curriculum recommendations contained herein are compatible with those

requirements. Articulation agreements often guide curriculum content as well, and are

important considerations in the formulation of programs of study, especially for transfer-

oriented programs.

Professional software engineers have a responsibility to society and their work carries

significant liabilities. Consequently, software engineers must conduct themselves in an

ethical and professional manner. The preamble to the Software Engineering Code of

Ethics and Professional Practice [ACM 1999] states:

Because of their roles in develo software systems, software

engineers have significant opportunities to do good or cause harm, to

enable others to do good or cause harm, or to influence others to do

good or cause harm. To ensure, as much as possible, that their efforts

will be used for good, software engineers must commit themselves to

making software engineering a beneficial and respected profession. In

accordance with that commitment, software engineers shall adhere to

the following Code of Ethics and Professional Practice.

Hence, instructors must ensure that the software engineering curriculum s students

to become familiar with the Code, and engages them in discussions and activities that

emphasize the eight pr iples of the Code.

There is ternate approach to the computing curriculum sequence outlined in this

report that would ce students into a software engineering course sequence at the onset,

in advance of the computer science coursework. This approach is detailed in the

Software Engineering 2004: Curriculum Guidelines for Undergraduate Degree

Programs in Software Engineering report. With this approach, in the first year students

take two courses (SE101, then SE102) that focus on software engineering with a major

emphasis on the engineering , but also introduce some programming and

fundamental computer science concepts. In the second year, students take two courses

(CS103 and SE200) that complete the development of the computer science content. For

associate degree gr g institutions with existing computer science programs, this

alternative approach is not the most feasible implementation; for other institutions, the

alternative approa ay be feasible.

10

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

Bibliography

ACM Two-Year College Computing Curricula Task , Guidelines for Associate-

Degree Programs in Information Systems, ACM Press (2004).

ACM Two-Year College Computing Curricula Task , Computing Curricula 2003:

Guidelines for Associate-Degree Curricula omputer Science, ACM Press (2003).

ACM Two-Year College Computing Curricula Task , Computing Curricula

Guidelines for Associate-Degree Programs: Computing Sciences. ACM Press (1993).

Association for Computing Machinery, . & the Institute for Electrical and Electronics

Engineers, . Software Engineering Code of Ethics and Professional Practice. (1999).

Retrieved July 12, 2005 from .

Bloom, Benjamin S., the Taxonomy of Educational Objectives: Classification of

Educational Goals. Handbook I: The Cognitive , McKay Press, New York

(1956).

Gorgone, Davis, Valacich, Topi, Feinstein, and Longnecker. IS 2002 Model Curriculum

and Guidelines for Undergraduate Degree Programs in Information Systems.

Association for Computing Machinery, et al. (2002).

IEEE-CS/ACM Joint Curriculum Task , Software Engineering 2004: Curriculum

Guidelines for Undergraduate Degree Programs in Software Engineering.

IEEE-CS/ACM Joint Curriculum Task , Computing Curricula 2001: Computer

Science.

11

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

Appendix A

Computer Science Imperative-First

Course Descriptions

The Imperative-first approach consists of a three-course sequence that begins with a

procedural structured-programming approach to fundamental programming concepts,

followed by object-oriented concepts, and culminates with data structures.

At the completion of the CS101I, CS102I, CS103I course sequence, the following student

performance objectives will be met. These performance objectives are grouped by the

body of knowledge categories for computer science.

AL: Algorithms and Complexity Student Performance Objectives

Basic algorithmic ysis

1. Ex in the use of big O, omega, and theta notation to describe the amount of

work done by gorithm.

2. Determ he time and space complexity of simple algorithms.

Algorithmic strategies

1.

2.

3.

Describe the shortcoming of brute- algorithms.

Implement a divide and conquer algorithm like Quicksort.

Discuss assorted heuristic problem solving methods.

Fundamental computing algorithms

1.

2.

3.

4.

5.

Design and implement various quadratic and O(NlogN) sorting algorithms.

Design and implement an appropriate hashing function for an application.

Discuss the efficiency considerations for sorting searching and hashing.

Design and implement a collision-resolution algorithm for a hash table.

Discuss other performance considerations such as small versus large files,

programming time, etc.

Basic computability

1. Provide a sample problem that has no algorithmic solution.

AR: Architecture and Organization Student Performance Objectives

Machine level representation of data

1.

2.

Ex in the purpose of different formats to represent numerical data.

Ex in how negative integers are stored in sign-magnitude and two’s-

complement representation.

Describe the internal representation of non-numeric data. 3.

12

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

Assembly level machine organization

1. Ex in the organization of the classical von ann machine and its major

functional units.

2. Ex in how to execute an instruction in a classical von ann machine.

GV: Graphics and Visual Computing Student Performance Objectives

Fundamental techniques in graphics

1. Distinguish the capabilities of different levels of graphics software and

describe the appropriateness of each.

Produce images using a standard graphics API.

Discuss the 3-dimensional world coordinate system.

2.

3.

HC: Human Computer In ction Student Performance Objectives

Foundations of HCI

1.

2.

3.

Discuss the reasons for human-centered software development.

Summarize the basic science of psychological and social in ction.

Distinguish between the different interpretations that the same icon, symbol,

word, and color have among varying human cultures.

Identify ways to respect human diversity when in cting with a computer

system.

4.

Building simple GUI

1.

2.

Identify several fundamental pr iples for effective GUI design.

Use a GUI toolkit to create a simple application that supports a graphical user

interface.

Produce two instances of the same GUI design; one based on fundamental

design pr iples and the other ignoring these pr iples.

Condu imple usability test for each instance and compare the results.

3.

4.

IM: Information Management Student Performance Objectives

Database systems

1. Ex in the characteristics that distinguish the database approach from the

traditional approach of programming with data files.

2. Describe the components of a database system and give examples of their use.

13

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

NC -Centric Computing Student Performance Objectives

Introduction t -centric computing

1.

2.

Discuss the evolution of earl works and the Inte .

Describe emerging in th -centric computing area such as

wireless computing and voice over IP.

OS: Operating Systems Student Performance Objectives

Overview of operating systems

1.

2.

Ex in the objectives and functions of modern operating systems.

Describe how operating systems historically have evolved from primitive

batch systems to sophisticated multi-user systems.

Describe the functions of a contemporary operating system with respect to

convenience, efficiency, and the ability to evolve.

3.

PF: Programming Fundamentals Student Performance Objectives

Fundamental programming constructs

1. yze and ex in the behavior of simple programs involving the

fundamental programming constructs.

Ex in the use of each data type and how each is stored in memory.

Modify and expand short programs using control structures and functions.

Design, implement, test and debug a program that uses each of the following

fundamental programming constructs: basic computation, simple I/O, standard

conditional and i tive structures, and the definition of functions.

Choose appropriate selection and i tion constructs for a given programming

task.

Apply the techniques of structured (functional) decomposition to break a

program into smaller pieces.

Describe parameters passing between functions.

2.

3.

4.

5.

6.

7.

Algorithms and problem solving

1. Discuss why algorithms are useful in problem solving with a programming

language.

List the recommended steps in problem solving.

Create algorithms for solving simple problems.

Use pseudocode or a programming language to implement, test, and debug

algorithms for problem solving.

Discuss what makes a good algorithm.

yze gorithm’s correctness and efficiency.

2.

3.

4.

5.

6.

Fundamental data structures

1. Define a data structure and an Data Type (ADT) and distinguish

among built-in and user-defined data structures.

14

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/08802410411

2006042

https://d.book118.com/088024104112006042
https://d.book118.com/088024104112006042

