医学统计学与医学数据 分析

汇报人:XX

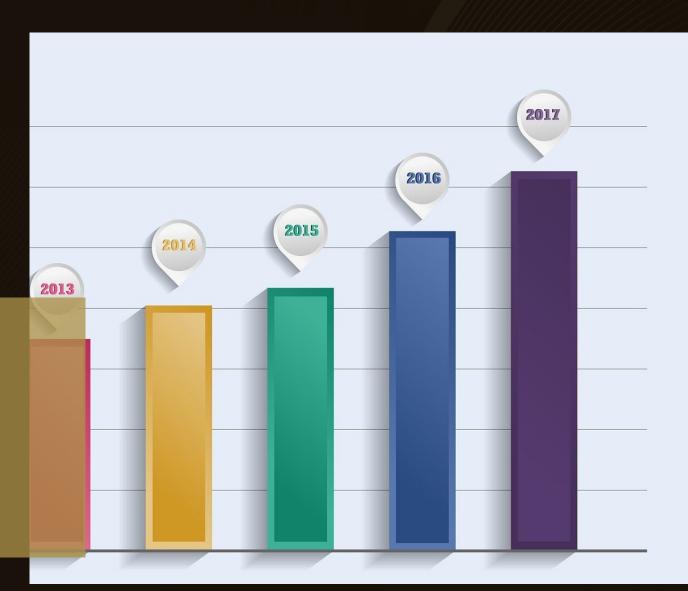
2024-02-01

CONTENTS

- 医学统计学基础概念
- 医学实验设计与样本量估算
- 描述性统计分析方法
- 推论性统计分析方法
- 医学数据可视化展示技巧
- 医学数据解读与报告撰写

CHAPTER 01

医学统计学基础概念


统计学定义及应用领域

统计学定义

统计学是一门研究数据收集、整理、 分析和解释的科学,旨在从数据中提 取有用信息,为决策提供依据。

应用领域

统计学广泛应用于医学、社会科学、 经济学、生物学等多个领域,是科学 研究的重要工具。

LOREM IPSU

2013 Lorem ipsum dolor consectetur adipiscing suspendisse sit amet eli condimentum tellus.

2014 Lorem ipsum dole consectetur adipiscing Suspendisse sit amet e condimentum tellus.

2015 Lorem ipsum dole consectetur adipiscing Suspendisse sit amet e condimentum tellus.

2016 Lorem ipsum dole consectetur adipiscing Suspendisse sit amet e condimentum tellus.

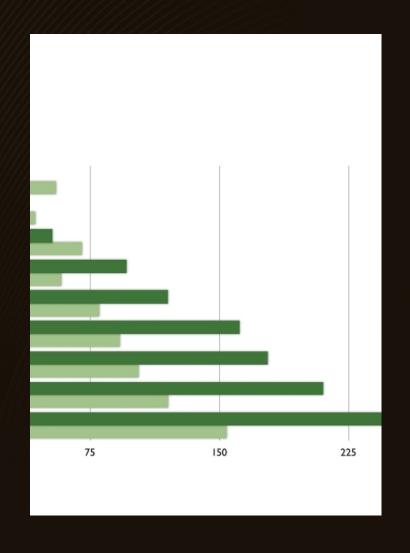
2017 Lorem ipsum dole consectetur adipiscing Suspendisse sit amet e condimentum tellus.

医学研究中统计学作用

实验设计与样本量估算

在医学研究中,统计学可以帮助研究者进行实验设计,确定合适的样本量,以保证研究结果的可靠性。

假设检验与区间估计


通过假设检验和区间估计等统计方法,可以对研究结果进行推断,判断研究假设是 否成立。

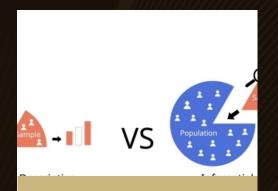
数据整理与描述

统计学可以对收集到的数据进行整理、分 类和描述,使研究者能够更好地理解数据 特征。

多因素分析与模型构建

对于复杂的医学研究问题,统计学可以帮助研究者进行多因素分析,构建适当的统计模型,以揭示各因素之间的关系。

常见统计学术语解释



总体是研究对象的全体 ,样本是从总体中抽取 的一部分。

变量与数据

变量是研究对象的特征或属性,数据是变量的具体取值。

参数与统计量

参数是描述总体的特征值,统计量是描述样本的特征值。

概率与分布

概率是某一事件发生的可能性大小,分布是随机变量取值的规律。

数据类型与变量分类

数据类型

根据数据的性质,可以将其分为定量数据和定性数据。定量数据包括连续型数据和离散型数据,定性数据包括有序分类数据和无序分类数据。

变量分类

根据变量的取值特点,可以将其分为连续型变量、离散型变量和分类变量。连续型变量取值连续不断,离散型变量取值有限且可数,分类变量取值表示不同的类别或属性。

CHAPTER 02

医学实验设计与样本量估算

实验设计原则及方法选择

对照原则

随机原则

随机分配实验对象到各组,以平衡非处理 因素对结果的影响。

方法选择

根据实验目的、实验条件和实验对象等因 素,选择适当的实验设计方法,如完全随 机设计、随机区组设计、交叉设计等。

样本量估算方法与技巧

预期效应大小

根据研究目的和预期效应大小, 确定所需的样本量。

显著性水平和把握度

设定合适的显著性水平和把握度,以控制假阳性和假阴性的风险。

变异程度

考虑实验对象间的变异程度,变异越大,所需样本量越大。

样本量估算软件

使用专业的样本量估算软件,如PASS、nQuery等,进行更加精确的样本量估算。

随机化和盲法应用

随机化方法

采用随机数字表、计算机随机程序等 方法进行随机化,确保实验对象被随 机分配到各组。

BIG DATA

ANALYTICS

DECISIONS

随机化和盲法的意义

随机化和盲法是保证实验结果客观、可靠的重要手段,能够减少实验误差和偏倚。

盲法实施

采用单盲、双盲等盲法措施,减少实验过程中的主观偏见和干扰。

伦理问题和数据安全性考虑

01

伦理审查

在实验开始前,需经过伦 理委员会审查并获得批准, 确保实验符合伦理规范和 法律法规要求。 02

知情同意

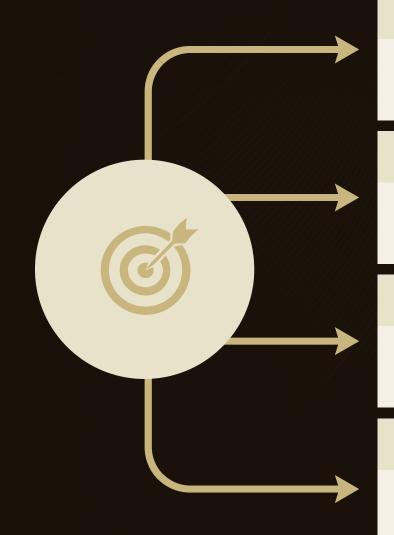
向实验对象充分告知实验 目的、方法、风险和收益 等信息,并获得其知情同 意书。 03

数据保密性

对实验数据采取严格的保密措施,确保数据不被泄露或滥用。

04

数据安全性


采用可靠的数据存储和备份措施,确保数据安全性和完整性。

CHAPTER 03

描述性统计分析方法

数值变量描述性指标计算

均值 (Mean)

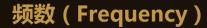
所有数值之和除以数值的个数,用于描述数据的平均水平。

中位数 (Median)

将数值从小到大排列后,位于中间位置的数,用于描述数据的中心趋势。

方差 (Variance)

各数值与均值之差的平方的平均数,用于描述数据的离散程度。


标准差 (Standard Deviati...

方差的平方根,也用于描述数据的离散程度。

分类变量描述性指标计算

百分比 (Percentage)

比率 (Ratio)

众数 (Mode)

各类别的出现次数,用于描述 各类别的分布情况。 各类别的频数占总频数的比例, 用于比较各类别的相对大小。 两个相关类别频数之比,用于描述类别间的相对关系。

出现次数最多的类别,用于描述数据的集中趋势。

直方图(Histogram)

展示数值变量的分布情况,横轴为数值范围,纵

箱线图 (Box Plot)

展示数值变量的中心趋势、离散程度和异常值,

包含箱体、须线和异常点。

饼图 (Pie Chart)

展示分类变量的分布情况,每个扇形代表一个类 别,扇形面积表示该类别的频数或百分比。

点图 (Dot Plot)

展示两个分类变量之间的关系,每个点代表一个 观测值,横轴和纵轴分别为两个分类变量。

异常值检测和处理方法

箱线图法

数值超出箱线图上下须线范围时,可视为 异常值。

处理方法

对异常值进行剔除、替换(如用均值、中位数等替换)或保留并进行分析说明。

3σ原则

数值超过均值±3倍标准差的范围时, 可视为异常值。

计算每个数值的Z-score,当Z-score的绝对值大于某个阈值时(如2或3),可视为异常值。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/088032130054006050