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We want to train an MLP by minimizing a loss over the training set

ℒ (w , b) =
∑
n

l(f (xn;w , b), yn).
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So, if we define ln = l(f (xn;w , b), yn), what we need is
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For clarity, we consider a single training sample x , and introduce s(1), . . . , s(L)

as the summations before activation functions.

x(0) = x
w (1),b(1)

−−−−−→ s(1) σ−→ x(1) w (2),b(2)

−−−−−→ s(2) σ−→ . . .
w (L),b(L)

−−−−−→ s(L) σ−→ x(L) = f (x ;w , b).
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as the summations before activation functions.

x(0) = x
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−−−−−→ s(1) σ−→ x(1) w (2),b(2)

−−−−−→ s(2) σ−→ . . .
w (L),b(L)

−−−−−→ s(L) σ−→ x(L) = f (x ;w , b).

Formally we set x(0) = x ,

∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)
)
,

and we set the output of th work as f (x ;w , b) = x(L).
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For clarity, we consider a single training sample x , and introduce s(1), . . . , s(L)

as the summations before activation functions.

x(0) = x
w (1),b(1)

−−−−−→ s(1) σ−→ x(1) w (2),b(2)

−−−−−→ s(2) σ−→ . . .
w (L),b(L)

−−−−−→ s(L) σ−→ x(L) = f (x ;w , b).

Formally we set x(0) = x ,

∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)
)
,

and we set the output of th work as f (x ;w , b) = x(L).

This is the forward pass.
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The core principle of the back-propagation algorithm is the “chain rule” from
differential calculus:

(g ◦ f )′ = (g ′ ◦ f )f ′

which generalizes to longer compositions and higher dimensions

JfN◦fN−1◦···◦f1 (x) =
N∏

n=1

Jfn (fn−1 ◦ · · · ◦ f1(x)),

where Jf (x) is the Jacobian of f at x , that is the matrix of the linear
approximation of f in the neighborhood of x .
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which generalizes to longer compositions and higher dimensions

JfN◦fN−1◦···◦f1 (x) =
N∏

n=1

Jfn (fn−1 ◦ · · · ◦ f1(x)),

where Jf (x) is the Jacobian of f at x , that is the matrix of the linear
approximation of f in the neighborhood of x .

The linear approximation of a composition of map s is the product of their
individual linear approximations.
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