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We want to train an MLP by minimizing a loss over the training set

L(w,b) =Y £(F(xni w, b), yn)-
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We want to train an MLP by minimizing a loss over the training set

L(w,b) =D £(F(xn w, b), yn)-

To use gradient descent, we need the expression of the gradient of the loss with
respect to the parameters:
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We want to train an MLP by minimizing a loss over the training set

L(w,b) =Y £(F(xni w, b), yn)-

To use gradient descent, we need the expression of the gradient of the loss with
respect to the parameters:

So, if we define ¢, = ¢(f(xn; w, b), yn), what we need is
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For clarity, we consider a single training sample x, and introduce s(), ... s(t)

as the summations before activation functions.

1 1 2 2
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X3 = x — .. —

s s 2y (D = f(x; w, b).
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For clarity, we consider a single training sample x, and introduce s(), ... s(t)

as the summations before activation functions.
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0 — s 2, s 2y () — f(x; w, b).

Formally we set x(9) = x,

s() = wx=1) 4 p(h
Vi=1,...,L,
x) = (s

and we set the output of the network as f(x; w, b) = x(1).
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For clarity, we consider a single training sample x, and introduce s(), ... s(t)

as the summations before activation functions.

@ p(1) @) p2) (L) (L)
X0 — 5 WORT ) 2, ) WD o) o WOHD ) oy () — (s w, b).

Formally we set x(9) = x,

s() = wx=1) 4 p(h
Vi=1,...,L,
x) = (s

and we set the output of the network as f(x; w, b) = x(1).

This is the forward pass.
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The core principle of the back-propagation algorithm is the ‘“chain rule” from
differential calculus:

(gof) = (g of)f

which generalizes to longer compositions and higher dimensions

N
JfNofN,lo‘~-of1 (X) = H Jf,,(fn—l ©:-+0 Fl(X))
n=1

where J¢(x) is the Jacobian of f at x, that is the matrix of the linear
approximation of f in the neighborhood of x.
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The core principle of the back-propagation algorithm is the ‘“chain rule” from
differential calculus:

(gof) =(g'of)f

which generalizes to longer compositions and higher dimensions

N
Jyofy_qo---0f (X) = H Jg (faz1 0+ 0 fi(x)),
n=1

where J¢(x) is the Jacobian of f at x, that is the matrix of the linear
approximation of f in the neighborhood of x.

The linear approximation of a composition of mappings is the product of their
individual linear approximations.
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