

一、复习回顾

1、离散型随机变量的数学期望

X	x_1	x_2	• • •	X_{i}	• • •	X_n
P	p_1	p_2	• • •	p_i	• • •	p_n

$$EX = x_1 p_1 + x_2 p_2 + L + x_i p_i + L + x_n p_n$$

数学期望是反映离散型随机变量的平均水平

2、数学期望的性质

$$E(aX+b)=aEX+b$$

3、求期望的步骤:

(1)列出相应的分布列 (2)利用公式

4、如果随机变量X服从两点分布为

X	1	0
P	p	1-р

则
$$EX = p$$

5、如果随机变量X服从二项分布,即X

~ B (n,p),则
$$EX = np$$

探究:甲、乙两名射手在同一条件下进行射击,分布列如下:

射手甲

击中环数51	5	6	7	8	9	10
概率P	0.03	0.09	0.20	0.31	0.27	0.10

射手乙

击中环数ξ1	5	6	7	8	9
概率P	0.01	0.05	0.20	0.41	0.33

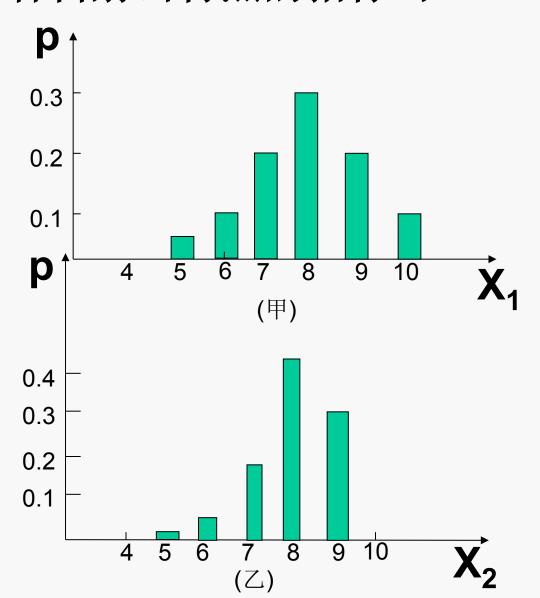
问题1:如果你是教练,你会派谁参加比赛呢?

用击中环数的平均数,比较两名射手的射击水平

$$E\xi_1 = 8$$
 $E\xi_2 = 8$

由上知 $\mathbf{E}\boldsymbol{\xi}_1 = \mathbf{E}\boldsymbol{\xi}_2$

思考:除平均中靶环数外,还有其他刻画两名同学各自射击特点的指标吗?



思考:怎样定量刻画随机变量的稳定性? 样本方差:

$$s^{2} = \frac{1}{n} \left[(x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2} + L + (x_{n} - \bar{x})^{2} \right]$$

$$s^{2} = (x_{1} - \bar{x})^{2} \cdot \frac{1}{n} + (x_{2} - \bar{x})^{2} \cdot \frac{1}{n} + L + (x_{n} - \bar{x})^{2} \cdot \frac{1}{n}$$
随机变量X的方差: 类似

DX=
$$(x_1-EX)^2 \cdot p_1 + (x_2-EX)^2 \cdot p_2 + ... + (x_n-EX)^2 \cdot p_n$$

称 \sqrt{DX} 为随机变量X的标准差。

思考: 离散型随机变量的期望、方差与样本的期望、方差的区别和联系是什么?

		样本	离散型随机变量
均	公式	$\frac{-}{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$	$E X = \sum_{i=1}^{n} x_{i} p_{i}$
值	意义	随着不同样本值 的变化而变化	是一个常数
方差	公式	$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - x)^2$	$\mathbf{D}X = \sum_{i=1}^{n} (\mathbf{x}_{i} - EX)^{2} \bullet_{\mathbf{p}_{i}}$
或标准差	意义	随着不同样本值的 变化而变化,刻画 样本数据集中于样 本平均值程度	是一个常数,反映随变量取值偏离均值的平均程度, DX , \sqrt{DX} 越小,偏离程度越小.

例:甲、乙两名射手在同一条件下进行射击,分布列如下:

射手甲	击中环数ξ1	5	6	7	8	9	10
	概率P	0.03	0.09	0.20	0.31	0.27	0.10

組	主	7
71	J	

击中环数ξ1	5	6	7	8	9
概率P	0.01	0.05	0.20	0.41	0.33

比较两名射手的射击水平

乙的射击成绩稳定性较好

E
$$\xi_1$$
=8 E ξ_2 =8

D ξ_1 = $\sum_{i=\frac{1}{9}^{5}}^{10} (i-8)^2 P(\xi_1=i) = 1.50$

D ξ_2 = $\sum_{i=5}^{10} (i-8)^2 P(\xi_2=i) = 0.82$
由上知 E ξ_1 = E ξ_2 , D ξ_1 >D ξ_2

$$EX_1 = 8, EX_2 = 8$$
 $DX_1 = 1.50, DX_2 = 0.82$

问题2:如果其他对手的射击成绩都在9环左右,应派哪一名选手参赛?

问题3:如果其他对手的射击成绩都在7环左右,应派哪一名选手参赛?

例1、随机抛掷一枚质地均匀的骰子,求向上一面的点数X的均值、方差和标准差。

例2:有甲乙两个单位都愿意聘用你,而你能获得如下信息:

甲单位不同职位月工 资X₁/元	1200	1400	1600	1800
获得相应职位的概 率P ₁	0.4	0.3	0.2	0.1
	,			
乙单位不同职位月工 资X ₂ /元	1000	1400	1800	2200

根据工资待遇的差异情况,你愿意选择哪家单位

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/118130072042006051