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 40.1. IDENTIFY:   Using the momentum of the free electron, we can calculate k and ω  and use these to express 
its wave function. 
SET UP:   ( , ) ,ikx i tx t Ae e ω−Ψ =  / ,k p= =  and 2/2 .k mω = =  

EXECUTE:   
24

10 1
34

4.50 10  kg m/s 4.27 10  m .
1.055 10  J s

pk
−

−
−

× ⋅
= = − = − ×

× ⋅=
 

2 34 10 1 2
17 1

31
(1.055 10  J s)(4.27 10  m ) 1.05 10  s .

2 2(9.108 10  kg)
k
m

ω
− −

−
−

× ⋅ ×
= = = ×

×
=  

10 1 17 1[4.27 10  m ) [1.05 10  s ]( , ) .i x i tx t Ae e
− −− × − ×Ψ =  

EVALUATE:   The wave function depends on position and time. 
 40.2. IDENTIFY:   Using the known wave function for the particle, we want to find where its probability function 

is a um. 
SET UP:   2 2 2 4 2 4( , ) [ ][ ].ikx i t ikx i t ikx i t ikx i tx t A e e e e e e e eω ω ω ω− − − + − +Ψ = − −  

2 2 2( 3 ) ( 3 )( , ) (2 [ ]) 2 (1 cos( 3 )).i kx t i kx tx t A e e A kx tω ω ω− − + −Ψ = − + = − −  

EXECUTE:   (a) For 0,t =  2 2( , ) 2 (1 cos( )).x t A kxΨ = −  2( , )x tΨ  is a um when cos( ) 1kx = −  and 

this happens when (2 1) , 0,1, .kx n nπ= + = …  2( , )x tΨ  is a um for 3, , etc.x
k k
π π

=  

(b) 2t π
ω

=  and 3 6 .tω π=  2 2( , ) 2 (1 cos( 6 )).x t A kx πΨ = − −  um for 6 , 3 ,... ,kx π π π− =  which 

gives a when 7 9, .x
k k
π π

=  

(c) From the results for parts (a) and (b), av
7 / / 3 .

2 /
k kv

k
π π ω

π ω
−

= =  2 1
av

2 1
v

k k
ω ω−

=
−

 with 2 4 ,ω ω=  1 ,ω ω=  

2 2k k=  and 1k k=  gives av
3 .v
k
ω

=  

EVALUATE:   The expressions in part (c) agree. 
 40.3. IDENTIFY:   Use the wave function from Example 40.1. 

SET UP:   2 2
2 1 2 1( , ) 2 {1 cos[( ) ( ) ]}.x t A k k x tω ωΨ = + − − −  2 13 3 .k k k= =  

2
,

2
k
m

ω =
=  so 2 19 9 .ω ω ω= =  

2 2( , ) 2 {1 cos(2 8 )}.x t A kx tωΨ = + −  

EXECUTE:   (a) At 2 / ,t π ω=  2 2( , ) 2 {1 cos(2 16 )}.x t A kx πΨ = + −  2( , )x tΨ  is um for 

cos(2 16 ) 1.kx π− =  This happens for 2 16 0, 2 ,... .kx π π− =  Smallest positive x where 2( , )x tΨ  is a 

um is 8 .x
k
π

=  
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(b) From the result of part (a), av
8 / 4 .
2 /

kv
k

π ω
π ω

= =  2 1
av

2 1

8 4 .
2

v
k k k k

ω ω ω ω−
= = =

−
  

EVALUATE:   The two expressions agree. 
 40.4. IDENTIFY:   We have a free particle, described in Example 40.1. 

SET UP and EXECUTE:   
2 2

2 1 2 1 2 1 2 1 av
av 2 1

2 1 2 1 2 1

( ) ( )( ) ( ) .
2 2 2

k k k k k k pv k k
k k m k k m k k m m

ω ω− − + −
= = = = + =

− − −
= = =  

EVALUATE:   This is the same as the classical physics result, / / .v p m mv m v= = =  

 40.5. IDENTIFY and SET UP:   ( ) sin .x A kxψ =  The position probability density is given by 2 2 2( ) sin .x A kxψ =  
EXECUTE:   (a) The probability is highest where sin 1 so 2 / /2, 1, 3, 5,…kx kx x n nπ λ π= = = =   

/4, 1, 3, 5,… so /4, 3 /4, 5 /4,…x n n xλ λ λ λ= = =  

(b) The probability of finding the particle is zero where 2 0,ψ =  which occurs where sin 0kx =  and 
2 / , 0, 1, 2,…kx x n nπ λ π= = =   

/2, 0,1, 2,… so 0, /2, , 3 /2,…x n n xλ λ λ λ=  =   =     
EVALUATE:   The situation is analogous to a standing wave, with the probability analogous to the square of 
the amplitude of the standing wave. 

 40.6. IDENTIFY and SET UP:   2 ∗Ψ = Ψ Ψ  

EXECUTE:   sin ,tψ ω∗ ∗Ψ =  so 2 22 2sin sin .t tψ ψ ω ψ ω∗ ∗Ψ = Ψ Ψ = =  2Ψ  is not time- t, so 
Ψ  is not the wavefunction for a stationary state. 
EVALUATE:   (cos sin )ie t i tωφψ ψ ω ωΨ = = +  is a wavefunction for a stationary state, since for it 

2 2 ,ψΨ =  which is time t. 

 40.7. IDENTIFY:   Determine whether or not 
2 2

22
d U

m dx
ψ

ψ− +
=  is equal to ,Eψ  for some value of E. 

SET UP:   
2 2

1
1 1 122

d U E
m dx

ψ
ψ ψ− + =

=  and 
2 2

2
2 2 222

d U E
m dx

ψ
ψ ψ− + =

=  

EXECUTE:   
2 2

1 1 2 22 .
2

d U BE CE
m dx

ψ
ψ ψ ψ− + = +

=  If ψ  were a solution with energy E, then 

1 1 2 2 1 2BE CE BE CEψ ψ ψ ψ+ = +  or 1 1 2 2( ) ( ) .B E E C E Eψ ψ− = −  This would mean that 1ψ  is a constant 
multiple of 2 1 2, and andψ ψ ψ  would be wave functions with the same energy. However, 1 2,E E≠  so this 
is not possible, and ψ  cannot be a solution to Eq. (40.23). 
EVALUATE:   ψ  is a solution if 1 2;E E=  see Exercise 40.9. 

 40.8. IDENTIFY:   Apply the Heisenberg Uncertainty Principle in the form /2.xx p∆ ∆ ≥ =  
SET UP:   The uncertainty in the particle position is proportional to the width of ( ).xψ  

EXECUTE:   The width of ( )xψ  is inversely proportional to .α  This can be seen by either plotting the 
function for different values of α  or by finding the full width at half- um. The particle’s uncertainty 
in position decreases with increasing .α  
(b) Since the uncertainty in position decreases, the uncertainty in momentum must increase. 
EVALUATE:   As α  increases, the function ( )A k  in Eq. (40.19) must become broader. 

 40.9. IDENTIFY:   Determine whether or not 
2 2

22
d U

m dx
ψ

ψ− +
=  is equal to .Eψ  

SET UP:   1ψ  and 2ψ  are solutions with energy E means that 
2 2

1
1 122

d U E
m dx

ψ
ψ ψ− + =

=  and  

2 2
2

2 22 .
2

d U E
m dx

ψ
ψ ψ− + =

=  
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EXECUTE:   Eq. (40.23): 
2 2

2 .
2

d U E
m dx

ψ
ψ ψ

−
+ =

=  Let 1 2A Bψ ψ ψ= +  

2 2

1 2 1 2 1 22 ( ) ( ) ( )
2

d A B U A B E A B
m dx

ψ ψ ψ ψ ψ ψ
−

⇒ + + + = +
=  

2 2 2 2
1 2

1 1 2 22 2 0.
2 2

d dA U E B U E
m mdx dx

ψ ψψ ψ ψ ψ
⎛ ⎞ ⎛ ⎞

⇒ − + − + − + − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =  But each of 1ψ  and 2ψ  satisfy 

Schrödinger’s equation separately so the equation still holds true, for any A or B. 
EVALUATE:   If 1ψ  and 2ψ  are solutions of the Schrodinger equation for different energies, then 

1 2B Cψ ψ ψ= +  is not a solution (Exercise 40.7). 
 40.10. IDENTIFY:   To describe a real situation, a wave function must be normalizable. 

SET UP:   2 dVψ  is the probability that the particle is found in volume dV. Since the particle must be 

somewhere, ψ  must have the property that 2 1dVψ =∫  when the integral is taken over all space. 

EXECUTE:   (a) For normalization of the one-dimensional wave function, we have 
0 02 2 2 2 2 2 2

0 0
1 ( ) ( ) .bx bx bx bxdx Ae dx Ae dx A e dx A e dxψ

∞ ∞ ∞− −
−∞ −∞ −∞

= = + = +∫ ∫ ∫ ∫ ∫  

02 2 2
2

0

1 ,
2 2

bx bxe e AA
b b b

∞−

−∞

⎧ ⎫⎪ ⎪= + =⎨ ⎬
−⎪ ⎪⎩ ⎭

 which gives 1 –1/22 00 m 1.41 mA b −= = . =  

(b) The graph of the wavefunction versus x is given in Figure 40.10. 

(c) (i) 
5 00 m 5 00 m2 2 2
0 500 m 0

2 ,bxP dx A e dxψ
+ . + . −
− .

= =∫ ∫  where we have used the fact that the wave function is an 

even function of x. Evaluating the integral gives 
2 1

2 (0 500 m) 2 00
1

(2 00 m )( 1) ( 1) 0 865
2 00 m

bAP e e
b

−
− . − .

−
− − .

= − = − = .
.

 

There is a little more than an 86% probability that the particle will be found within 50 cm of the origin. 

(ii) 
2 10 02 2 2

1
2 00 m 1( ) 0.500

2 22(2 00 m )
bx bx AP Ae dx A e dx

b

−

−−∞ −∞

.
= = = = = =

.∫ ∫  

There is a 50-50 chance that the particle will be found to the left of the origin, which agrees with the fact 
that the wave function is symmetric about the y-axis. 

(iii) 
1 00 m 2 2
0 500 m

bxP A e dx
. −
.

= ∫  

1 12
2(2 00 m )(1 00 m) 2(2 00 m )(0 500 m) 4 21( ) ( ) 0 0585

2 2
A e e e e

b
− −− . . − . . − −= − = − − = .

−
 

EVALUATE:   There is little chance of finding the particle in regions where the wave function is small. 
 

 

Figure 40.10 
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 40.11. IDENTIFY and SET UP:   The energy levels for a particle in a box are given by 
2 2

2 .
8n
n hE
mL

=  

EXECUTE:   (a) The lowest level is for 1,n =  and 
34 2

67
1 2

(1)(6.626 10  J s) 1.6 10  J.
8(0.20 kg)(1.3 m)

E
−

−× ⋅
= = ×  

(b) 21
2

E mv=  so 
67

332 2(1.2 10  J) 1.3 10  m/s.
0.20 kg

Ev
m

−
−×

= = = ×  If the ball has this speed the time it 

would take it to travel from one side of the table to the other is 
33

33
1.3 m 1.0 10  s.

1.3 10  m/s
t −= = ×

×
 

(c) 
2

1 2 12 , 4 ,
8

hE E E
mL

= =  so 67 67
2 1 13 3(1.6 10  J) 4.9 10  J.E E E E − −∆ = − = = × = ×  

(d) EVALUATE:   No, quantum mechanical effects are not important for the game of billiards. The discrete, 
quantize ture of the energy levels is completely unobservable. 

 40.12. IDENTIFY:   Solve Eq. (40.31) for L. 
SET UP:   The ground state has 1.n =  

EXECUTE:   
34

15
27 6 191

(6.626 10  J s) 6.4 10  m
8 8(1.673 10  kg)(5.0 10  eV)(1.602 10  J/eV)

hL
mE

−
−

− −

× ⋅
= = = ×

× × ×
 

EVALUATE:   The value of L we calculated is on the order of the diameter of a nucleus. 
 40.13. IDENTIFY:   An electron in the lowest energy state in this box must have the same energy as it would in the 

ground state of hydrogen. 

SET UP:   The energy of the thn  level of an electron in a box is 
2

2 .
8n
nhE
mL

=  

EXECUTE:   An electron in the ground state of hydrogen has an energy of 13 6 eV,− .  so find the width 
corresponding to an energy of 1 13 6 eV.E = .  Solving for L gives 

34
10

31 191

(6 626 10 J s) 1 66 10 m.
8 8(9 11 10 kg)(13 6 eV)(1 602 10 J/eV)

hL
mE

−
−

− −

. × ⋅
= = = . ×

. × . . ×
 

EVALUATE:   This width is of the same order of magnitude as the diameter of a Bohr atom with the 
electron in the K shell. 

 40.14. IDENTIFY and SET UP:   The energy of a photon is .cE hf h
λ

= =  The energy levels of a particle in a box 

are given by Eq. (40.31). 

EXECUTE:   (a) 
8

34 18
9

(3.00 10 m/s)(6.63 10 J s) 1.63 10 J.
(122 10 m)

E − −
−

×
= × ⋅ = ×

×
 

2
2 2
1 22 ( ).

8
hE n n
mL

∆ = −  

2 2 2 34 2 2 2
101 2

31 18
( ) (6.63 10  J s) (2 1 ) 3.33 10  m.
8 8(9.11 10  kg)(1.63 10  J)

h n nL
m E

−
−

− −
− × ⋅ −

= = = ×
∆ × ×

 

(b) The ground state energy for an electron in a box of the calculated dimensions is 
2 34 2

19
2 31 10 2

(6.63 10  J s) 5.43 10  J 3.40 eV
8 8(9.11 10  kg)(3.33 10  m)

hE
mL

−
−

− −
× ⋅

= = = × =
× ×

 (one-third of the original 

photon energy), which does not correspond to the 13.6 eV−  ground state energy of the hydrogen atom.  

EVALUATE:   (c) Note that the energy levels for a particle in a box are proportional to 2,n  whereas the 

energy levels for the hydrogen atom are proportional to 2
1 .
n

−  A one-dimensional box is not a good model 

for a hydrogen atom. 
 40.15. IDENTIFY and SET UP:   Eq. (40.31) gives the energy levels. Use this to obtain an expression for 2 1E E−  

and use the value given for this energy difference to solve for L. 
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EXECUTE:   Ground state energy is 
2

1 2 ;
8

hE
mL

=  first excited state energy is 
2

2 2
4 .

8
hE

mL
=  The energy 

separation between these two levels is 
2

2 1 2
3 .

8
hE E E

mL
∆ = − =  This gives 3

8
L h

m E
= =

∆
 

34 10
31 19

36 626 10  J s 6 1 10  m 0 61 nm.
8(9 109 10  kg)(3 0 eV)(1 602 10  J/1 eV)

L − −
− −= . × ⋅ = . × = .

. × . . ×
 

EVALUATE:   This energy difference is typical for an atom and L is comparable to the size of an atom. 
 40.16. IDENTIFY:   The energy of the absorbed photon must be equal to the energy differenc ween the two states. 

SET UP and EXECUTE:   The second excited state energy is 
2 2

3 2
9 .
2

E
mL

π
=

=  The ground state energy is 

2 2

1 2 .
2

E
mL

π
=

=  1 1.00 eV,E =  so 3 9.00 eV.E =  For the transition 
2 2

2
4 .E
mL
π

∆ =
=  .hc E

λ
= ∆  

15 8
7(4.136 10  eV s)(2.998 10  m/s) 1.55 10  m 155 nm.

8.00 eV
hc
E

λ
−

−× ⋅ ×
= = = × =

∆
 

EVALUATE:   This wavelength is much shorter than those of visible light. 
 40.17. IDENTIFY:   If the given wave function is a solution to the Schrödinger equation, we will get an identity 

when we substitute that wave function into the Schrödinger equation. 

SET UP:   We must substitute the equation /2( , ) sin niE tn xx t e
L L

π −⎛ ⎞Ψ = ⎜ ⎟
⎝ ⎠

=  into the one-dimensional 

Schrödinger equation 
2 2

2
( ) ( ) ( ) ( ).

2
d x U x x E x

m dx
ψ

ψ ψ− + =
=  

EXECUTE:   Taking the second derivative of ( , )x tΨ  with respect to x gives 
22

2
( , ) ( , ).d x t n x t

Ldx
πΨ  ⎛ ⎞= − Ψ⎜ ⎟

⎝ ⎠
 

Substituting this result into 
2 2

2
( ) ( ) ( ) ( ),

2
d x U x x E x

m dx
ψ

ψ ψ− + =
=  we get 

22
( , ) ( , )

2
n x t E x t

m L
π⎛ ⎞ Ψ = Ψ⎜ ⎟

⎝ ⎠

=  

which gives 
22

,
2n

nE
m L

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

=  the energies of a particle in a box. 

EVALUATE:   Since this process gives us the energies of a particle in a box, the given wave function is a 
solution to the Schrödinger equation 

 40.18. IDENTIFY:   Find x where 1ψ  is zero and where it is a um. 

SET UP:   1
2 sin .x
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EXECUTE:   (a) The wave function for 1n =  vanishes only at 0x =  and x L=  in the range 0 .x L≤ ≤  
(b) In the range for ,x  the sine term is a um only at the middle of the box, /2.x L=  
EVALUATE:   (c) The answers to parts (a) and (b) are consistent with the figure. 

 40.19. IDENTIFY and SET UP:   For the 2n =  first excited state the normalized wave function is given by  

Eq. (40.35). 2
2 2( ) sin .xx
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 2 2
2

2 2( ) sin .xx dx dx
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Examine 2
2( )x dxψ  and find where 

it is zero and where it is um. 

EXECUTE:   (a) 2
2 0dxψ =  implies 2sin 0x

L
π⎛ ⎞ =⎜ ⎟

⎝ ⎠
 

2 ,x m
L
π

π=  0, 1, 2,  ;m = …  ( /2)x m L=  

For 0, 0;m x= =  for 1, /2;m x L= =  for 2,m x L= =  
The probability of finding the particle is zero at 0, /2,x L=  and L. 
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(b) 2
2 dxψ  is um when 2sin 1x

L
π⎛ ⎞ = ±⎜ ⎟

⎝ ⎠
 

2 ( /2), 1, 3, 5,  ; ( /4)x m m x m L
L
π

π= = =…  

For 1, /4;m x L= =  for 3, 3 /4m x L= =  
The probability of finding the particle is largest at /4 and 3 /4.x L L=  
(c) EVALUATE:   The answers to part (a) correspond to the zeros of 2ψ  shown in Figure 40.12 in the 

textbook and the answers to part (b) correspond to the two values of x where 2ψ  in the figure is um. 

 40.20. IDENTIFY:   Evaluate 
2

2
d
dx

ψ  and see if Eq. (40.25) is satisfied. ( )xψ  must be zero at the walls, where .U → ∞  

SET UP:   sin cos .d kx k kx
dx

=  cos sin .d kx k kx
dx

= −  

EXECUTE:   (a) 
2

2
2 ,d k

dx
ψ

ψ= −  and for ψ  to be a solution of Eq. (40.25), 2
2

2 .mk E=
=

 

(b) The wave function must vanish at the rigid walls; the given function will vanish at 0x =  for any ,k  
but to vanish at ,x L kL nπ= =  for integer .n  

EVALUATE:   From Eq. (40.31), 
2 2 2

2 ,
2n

nE
mL
π

=
=  so n

nk
L
π

=  and sinA kxψ =  is the same as nψ  in  

Eq. (40.32), except for a different symbol for the normalization constant 
 40.21. (a) IDENTIFY and SET UP:   cos .A kxψ =  Calculate 2 2/d dxψ  and substitute into Eq. (40.25) to see if this 

equation is satisfied. 

EXECUTE:   Eq. (40.25): 
2 2

2 28
h d E

m dx
ψ

ψ
π

− =  

( sin ) sind A k kx Ak kx
dx
ψ

= − = −  

2
2

2 ( cos ) cosd Ak k kx Ak kx
dx

ψ
= − = −  

Thus Eq. (40.25) requires 
2

2
2 ( cos ) ( cos ).

8
h Ak kx E A kx

mπ
− − =  

This says 
2 2

2 ;
8
h k E

mπ
=  2 2

( /2 )
mE mEk

h π
= =

=
 

cosA kxψ =  is a solution to Eq. (40.25) if 2 .mEk =
=

 

(b) EVALUATE:   The wave function for a particle in a box with rigid walls at 0x =  and x L=  must 
satisfy the boundary conditions 0ψ =  at 0x =  and 0ψ =  at .x L=  (0) cos0 ,A Aψ = =  since cos0 1.=  
Thus ψ  is not 0 at 0x =  and this wave function isn’t acceptable because it doesn’t satisfy the required 
boundary condition, even though it is a solution to the Schrödinger equation. 

 40.22. IDENTIFY:   The energy levels are given by Eq. (40.31). The wavelength λ of the photon absorbed in an 

atomic transition is related to the transition energy E∆  by .hc
E

λ =
∆

 

SET UP:   For the ground state 1n =  and for the third excited state 4.n =  
EXECUTE:   (a) The third excited state is 4,n = so 

2 34 2
2 17

2 31 9 2
15(6.626 10 J s)(4 1) 5.78 10 J 361eV.

8 8(9.11 10 kg)(0.125 10 m)
hE
mL

−
−

− −
× ⋅

∆ = − = = × =
× ×
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(b) 
34 8

17
(6.63 10  J s)(3.0 10  m/s) 3.44 nm

5.78 10  J
hc

E
λ

−

−
× ⋅ ×

= = =
∆ ×

 

EVALUATE:   This photon is an x ray. As the width of the box increases the transition energy for this 
transition decreases and the wavelength of the photon increases. 

 40.23. IDENTIFY and SET UP:   .
2

h h
p mE

λ = =  The energy of the electron in level n is given by Eq. (40.31). 

EXECUTE:   (a) 
2

10 10
1 12 2 2

2 2(3.0 10  m) 6.0 10  m.
8 2 /8

h hE L
mL mh mL

λ − −= ⇒ = = = × = ×  The wavelength 

is twice the width of the box. 
34

24
1 10

1

(6.63 10  J s) 1.1 10  kg m/s.
6.0 10  m

hp
λ

−
−

−
× ⋅

= = = × ⋅
×

 

(b) 
2

10
2 22

4 3.0 10  m.
8

hE L
mL

λ −= ⇒ = = ×  The wavelength is the same as the width of the box. 

24
2 1

2
2 2.2 10 kg m/s.hp p

λ
−= = = × ⋅  

(c) 
2

10
3 32

9 2 2.0 10  m.
38

hE L
mL

λ −= ⇒ = = ×  The wavelength is two-thirds the width of the box. 

24
3 13 3.3 10 kg m/s.p p −= = × ⋅  

EVALUATE:   In each case the wavelength is an integer multiple of /2.λ  In the thn  state, 1.np np=  
 40.24. IDENTIFY:   To describe a real situation, a wave function must be normalizable. 

SET UP:   2ψ  dV is the probability that the particle is found in volume dV. Since the particle must be 

somewhere, ψ  must have the property that 2 1dVψ =∫  when the integral is taken over all space. 

EXECUTE:   (a) In one dimension, as we have here, the integral discussed above is of the form 
2( ) 1.x dxψ

∞

−∞
=∫  

(b) Using the result from part (a), we have 
2

2 2( ) .
2

ax
ax ax ee dx e dx

a

∞
∞ ∞

−∞ −∞
−∞

= = = ∞∫ ∫  Hence this wave 

function cannot be normalized and therefore cannot be a valid wave function. 
(c) We only need to integrate this wave function of 0 to ∞  because it is zero for 0.x <  For normalization we 

have 
2 2 2

2 2 2 2
0 0

0

1 ( ) ,
2 2

bx
bx bx A e Adx Ae dx A e dx

b b
ψ

∞−∞ ∞ ∞ −
−∞

= = = = =
−∫ ∫ ∫-  which gives 

2
1,

2
A
b

=  so 2 .A b=  

EVALUATE:   If b were negative, the given wave function could not be normalized, so it would not be allowable. 

 40.25. IDENTIFY:   Compare 
2 2

22
d U

m dx
ψ

ψ− +
=  to Eψ  and see if there is a value of k for which they are equal. 

SET UP:   
2

2
2 sin sin .d kx k kx

dx
= −  

EXECUTE:     (a) Eq. (40.23): 
2 2

2 .
2

d U E
m dx

ψ
ψ ψ

−
+ =

=  

Left-hand side: 
2 2 2 2 2 2

0 0 02 ( sin ) sin sin sin .
2 2 2

d k kA kx U A kx A kx U A kx U
m m mdx

ψ
⎛ ⎞−

+ = + = +⎜ ⎟⎜ ⎟
⎝ ⎠

= = =  But 

2 2

0 02
k U U E
m

+ > >
=  if k  is real. But 

2 2

02
k U
m

+
=  should equal .E  This is not the case, and there is no k 

for which this 2ψ  is a solution. 
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(b) If 0,E U>  then 

2 2

02
k U E
m

+ =
=

 is consistent and so sinA kxψ = is a solution of Eq. (40.23) for this case. 

EVALUATE:   For a square-well potential and 0,E U<  Eq. (40.23) with 0U U=  applies outside the well 
and the wave function has the form of Eq. (40.40). 

 40.26. IDENTIFY:   .h
p

λ =  p is related to E by 
2

.
2
pE U
m

= +  

SET UP:   For ,x L>  0.U U=  For 0 ,x L< <  0.U =  

EXECUTE:   For 0 ,x L< <  02 2 (3 )p mE m U= =  and in
0

.
2 (3 )

h
m U

λ =  For ,x L>  

0 02 ( ) 2 (2 )p m E U m U= − =  and out
0 0

.
2 ( ) 2 (2 )

h h
m E U m U

λ = =
−

 Thus, the ratio of the 

wavelengths is 0out

in 0

2 (3 ) 3 .
22 (2 )

m U
m U

λ
λ

= =  

EVALUATE:   For x L>  some of the energy is potential and the kinetic energy is less than it is for 
0 ,x L< <  where 0.U =  Therefore, outside the box p is less and λ  is greater than inside the box. 

 40.27. IDENTIFY:   Figure 40.15b in the textbook gives values for the bound state energy of a square well for 
which 0 1-1DW6 .U E=  

SET UP:   
2 2

1-1DW 2 .
2

E
mL

π
=

=  

EXECUTE:   
2 2

19
1 1-1DW 120.625 0.625 ; 2.00 eV 3.20 10 J.

2
πE E E
mL

−= = = = ×
=

1/2
10

31 19
0.625 3.43 10  m.

2(9.109 10  kg)(3.20 10  J)
L π −

− −

⎛ ⎞
= = ×⎜ ⎟⎜ ⎟× ×⎝ ⎠
=  

EVALUATE:   As L increases the ground state energy decreases. 
 40.28. IDENTIFY:   The energy of the photon is the energy given to the electron. 

SET UP:   Since 0 1-1DW6U E=  we can use the result 1 1-1DW0.625E E=  from Section 40.4. When the 
electron is outside the well it has potential energy 0,U  so the minimum energy that must be given to the 
electron is 0 1 1-1DW5.375 .U E E− =  
EXECUTE:   The um wavelength of the photon would be 

1.

λ

=
EVALUATE:   This photon is in the infrared. The wavelength of the photon decreases when the width of the 
well decreases. 

 40.29. IDENTIFY:   Calculate 
2

2
d
dx

ψ  and compare to 2
2 .mE

ψ−
=

 

SET UP:   sin cos .d kx k kx
dx

=  cos sin .d kx k kx
dx

= −  

EXECUTE:   Eq. (40.37): 2 2sin cos .mE mEA x B xψ = +
= =

 

2

2 2 2 2
2 2 2 2 2sin cos ( ).d mE mE mE mE mEA x B x

dx
ψ ψ−⎛ ⎞ ⎛ ⎞= − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠= == = =
 This is Eq. (40.38), so this ψ  is a 

solution. 
EVALUATE:   ψ  in Eq. (40.38) is a solution to Eq. (40.37) for any values of the constants A and B. 



Quantum Mechanics   40-9 

© Copyright 2012 Pearson Education, Inc. his material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 40.30. IDENTIFY:   The longest wavelength corresponds to the smallest energy change. 

SET UP:   The ground level energy level of the infinite well is 
2

1-1DW 2 ,
8

hE
mL

=  and the energy of the 

photon must be equal to the energy differenc ween the two shells. 
EXECUTE:   The 400.0 nm photon must correspond to the 1n =  to 2n =  transition. Since 0 1-1DW6 ,U E=  
we have 2 1-1DW 1 1-1DW2 43  and 0 625 .E E E E= . = .  The energy of the photon is equal to the energy 

differenc ween the two levels, and 
2

1-1DW 2 ,
8

hE
mL

=  which gives 

2

2 1 1-1DW 2
1 805(2 43 0 625) .

8
hc hE E E E

mLγ λ
.

= − ⇒ = . − . =  Solving for L gives 

34 7
10

31 8
(1 805) (1 805)(6 626 10  J s)(4 00 10  m) 4 68 10  m 0 468 nm.

8 8(9 11 10  kg)(3 00 10 m/s)
hL

mc
λ − −

−
−

. . . × ⋅ . ×
= = = . × = .

. × . ×  
 

EVALUATE:   This width is approximately half that of a Bohr hydrogen atom. 
 40.31. IDENTIFY:   Find the transition energy E∆  and set it equal to the energy of the absorbed photon. Use 

/ ,E hc λ=  to find the wavelength of the photon. 
SET UP:   0 1-1DW6 ,U E=  as in Figure 40.15 in the textbook, so 1 1-1DW0 625E E= .  and 3 1-1DW5 09E E= .  

with 
2 2

1-1DW 2 .
2

E
mL

π
=

=  In this problem the particle bound in the well is a proton, so 271 673 10  kg.m −= . ×  

EXECUTE:   
2 2 2 34 2

12
1-1DW 2 27 15 2

(1 055 10  J s) 2 052 10  J.
2 2(1 673 10  kg)(4 0 10  m)

E
mL

π π −
−

− −
. × ⋅

= = = . ×
. × . ×

=
 The transition energy 

is 3 1 1-1DW 1-1DW(5 09 0 625) 4 465 .E E E E E∆ = − = . − . = .  12 124 465(2 052 10  J) 9 162 10  JE − −∆ = . . × = . ×  
The wavelength of the photon that is absorbed is related to the transition energy by / ,E hc λ∆ =  so 

34 8
14

12
(6 626 10  J s)(2 998 10  m/s) 2 2 10  m 22 fm.

9 162 10  J
hc
E

λ
−

−
−

. × ⋅ . ×
= = = . × =

∆ . ×
 

EVALUATE:   The wavelength of the photon is comparable to the size of the box. 

 40.32. IDENTIFY:   The tunneling probability is 02

0 0

2 ( )
, with 16 1   and .L m U EE ET Ge G

U U
κ κ− ⎛ ⎞ −

= = − =⎜ ⎟
⎝ ⎠ =

 so 

02 2 ( )

0 0
16 1 .

m U E LE ET e
U U

− −
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

=  

SET UP:   6 15 27
0 30.0 10  eV, 2.0 10  m, 6.64 10  kg.U L m− −= × = × = ×  

EXECUTE:   (a) 6 6
0 1.0 10  eV ( 29.0 10 eV), 0.090.U E E T− = × = × =  

(b) If 6 6
0 10.0 10 eV ( 20.0 10 eV), 0.014.U E E T− = × = × =  

EVALUATE:   T is less when 0U E−  s 10.0 MeV than when 0U E−  is 1.0 MeV. 

 40.33. IDENTIFY:   The tunneling probability is 02 2 ( ) /

0 0
16 1 .L m U EE ET e

U U
− −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

=  

SET UP:   
0

6.0 eV
11.0 eV

E
U

=  and 19
0 5 eV 8.0 10 J.E U −− = = ×  

EXECUTE:   (a) 90.80 10  m:L −= ×  
9 31 19 342(0.80 10 m) 2(9.11 10 kg)(8.0 10 J) /1.055 10 J s 86.0 eV 6.0 ev16 1 4.4 10 .

11.0 eV 11.0 eV
T e

− − − −− × × × × ⋅ −⎛ ⎞⎛ ⎞
= − = ×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b) 90.40 10 m:L −= ×  44.2 10 .T −= ×  
EVALUATE:   The tunneling probability is less when the barrier is wider. 
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