QUANTUM MECHANICS

40.1. IDpENTIFY: Using the momentum of the free electron, we can calculate £ and @ and use these to express
its wave function.
SETUP: W(x,1)=Ae™e ™ k=p/h, and o= nhk*/2m.
EXECUTE: szz:—450X1044kg{ms:—427xl¢°nfy
n 1.055x1074 J-5
nk: (1.055x107* 1-5)(4.27x10' m™)?
2m 2(9.108 107! kg)

. 10—\, 17 -1
W(x,t) = Ag~T427X10 m)x if1.05x107 571}

=1.05x10"7 s7".

EVALUATE: The wave function depends on position and time.
40.2. IpENTIFY: Using the known wave function for the particle, we want to find where its probability function
is a maximum.

SET Up: |‘I"(x,t)|2 _ |A|2[eikxe—iwt _ ezikre4iwt][e—ikxe+iwt _ e—2ikxe+4iwz]_
[W(x, 0|7 = |47 2 —[e 300 4 itke=300) o) 4 (1 = cos(hor — 31)).

EXECUTE: (a) For 1=0, [W(x,0)" =2|4]" (1 - cos(kx)). [¥(x,0)| is a maximum when cos(kx) = —1 and

this happens when kx=2n+1)7z, n=0,1,.... |‘I‘(x, t)|2 is a maximum for x = %, 37, etc.

M) =27 and 301 =6x. [W(x, ) = 2|4 (1- cos(kx— 67)). Vaximum for kx— 67 = 7, 37,..., which
w

. . T 9z
gives naximia when x =—, —.
ko k
Trlk—nlk 3 - .
(¢) From the results for parts (a) and (b), v,, = 7:2—7r =22 Vav = DA ith w, =40, o) =0,
7l k ky — K
3w

ky =2k and k; =k gives v,, = o

EVALUATE: The expressions in part (c) agree.

40.3. IDENTIFY: Use the wave function from Example 40.1.
2

SETUP: |W(x, )| = 2| 4[> {1+ cos[(k, — k)x— (0, — )]}, ky =3k =3k. w= % 50 @y =90, = 9.
[W(x, ) = 2|4 {1+ cos(2kx —8ar)}.

EXECUTE: (a) At ¢ =27/o, |W(x,0)|" = 2| 4] {1+ cos(2kx—167)}. |¥(x,0)[* is maximum for

cos(2kx —16x) =1. This happens for 2kx —167 =0, 27,... . Smallest positive x where |‘~I’(x, t)|2 isa
maximum is x = 7”
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40.4.

40.5.

40.6.

40.7.

40.8.

40.9.

Balk _do | _o-oy 30 do

270 kY -k 2k k-
EVALUATE: The two expressions agree.

IDENTIFY: We have a free particle, described in Example 40.1.

0y =y _ 0 (k3 -k) _ h (k) —k) _ B
ky—k  2m ky—-k 2m ky —ky 2m
EVALUATE: This is the same as the classical physics result, v= p/m = mv/im =v.

(b) From the result of part (a), v,, =

SET UP and EXECUTE: v, =

(ky + ky) = 2ax.
m

IDENTIFY and SET UP:  /(x) = Asinkx. The position probability density is given by |l,z/()c)|2 = A*sin’ kx.
EXECUTE: (a) The probability is highest where sinkx =1s0 kx =27zx/A=nxn/2,n=1, 3,5,...
x=nAl4,n=1,3,5,...so0x=A1/4,31/4, 51/4,...

(b) The probability of finding the particle is zero where |1//|2 =0, which occurs where sinkx=0 and
kx=2nmx/IA=nr,n=0,1,2,...

x=nA/2,n=0,1,2,...s0x=0,4/2,1,34/2,...

EVALUATE: The situation is analogous to a standing wave, with the probability analogous to the square of
the amplitude of the standing wave.

IDENTIFY and SET UP: |‘I‘|2 =¥y

EXECUTE: Y¥* =y " sinwt, so |‘1‘|2 =YY =ty sin or = |z//|2 sin? . |‘I’|2 is not time-independent, so
V¥ is not the wavefunction for a stationary state.

EVALUATE: Y = x//ei”¢ = (coswt +isinat) is a wavefunction for a stationary state, since for it

|\I’|2 :|1//|2, which is time independent.
2 2

. d .
IDENTIFY: Determine whether or not —z—d—gl +Uy isequalto Ey, for some value of E.
m dx
n dy W d*y
SETUP: ———L+ Uy =Ey, and ———=2+Uy, =E
m de i = £ m Yy =Ly
2 g%y
EXECUTE: _2_7 +Uy = BE\y, + CE,,. If y were a solution with energy E, then
m dx

BE\y, + CE,y, = BEy,+ CEy, or B(E, - E)y, =C(E - E,)y,. This would mean that y, is a constant
multiple of ,, and ; and y, would be wave functions with the same energy. However, E| # E,, so this
is not possible, and ' cannot be a solution to Eq. (40.23).

EVALUATE: y isasolution if E| = E,; see Exercise 40.9.

IDENTIFY: Apply the Heisenberg Uncertainty Principle in the form AxAp, >7/2.

SET UP: The uncertainty in the particle position is proportional to the width of y(x).

EXECUTE: The width of w(x) is inversely proportional to Ja. This can be seen by either plotting the
function for different values of « or by finding the full width at half-maximum. The particle’s uncertainty
in position decreases with increasing o.

(b) Since the uncertainty in position decreases, the uncertainty in momentum must increase.
EVALUATE: As « increases, the function A(k) in Eq. (40.19) must become broader.

2 52

IDENTIFY: Determine whether or not __d_(g/ +Uy isequalto Ey.
2m dx
. . n*d 2(/11
SETUP: 1y and y, are solutions with energy £ means that o 2 +Uy, =Ey; and
m dx

n d’y,
- +Uy, =Ey,.

m dxz %) %)
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2 42

W2 d
EXECUTE: Eq. (40.23): —— Y 1 Uy =Ey. Let v = Ay, + By,
2m dx
52 4P
= ——— (4y, + By,) + U(Ay, + By,) = E(Ay, + By,)
2m dx

n* d? n* d? ,
= A — ‘/;1 +Uy, —Ey, |+ B| — l/;z +Uy, —Ey, |=0. But each of y; and y, satisfy
2m dx 2m dx

Schrédinger’s equation separately so the equation still holds true, for any 4 or B.
EVALUATE: If y; and y, are solutions of the Schrodinger equation for different energies, then
v = By, + Cy, is not a solution (Exercise 40.7).

40.10. IpENTIFY: To describe a real situation, a wave function must be normalizable.

SET UP: |l//|2 dV s the probability that the particle is found in volume dV. Since the particle must be
somewhere, y must have the property that .H 1//|2d V' =1 when the integral is taken over all space.
EXECUTE: (a) For normalization of the one-dimensional wave function, we have

[Py 2, (0 b2 © 2 g (O 2 2bx © 2 dbx
l—j_w|w| dx—j_oo(Ae ) dx+j0 (4e ™) dx—J-_OOA e dx+_[0 A“e " dx.

0

2bx *©

e —2bx

e
—2b

2

1=4° = A?, which gives A=~/b=v2.00m™" =141 m™"?

+

0
(b) The graph of the wavefunction versus x is given in Figure 40.10.

5.00 5.00
© @ P= J.+0 soom |(//|2dx = Z'f(; mAze_szdx, where we have used the fact that the wave function is an
—=U. m
even function of x. Evaluating the integral gives
A% —~(2.00m™")
p=A (2p0s00m) gy (2.00m : )(e 200 _1) 0,865
b 2.00m"~

There is a little more than an 86% probability that the particle will be found within 50 cm of the origin.
y 0 0 A 200m™ 1
(i) P=] (e"Vax=[" Aedr=L"=""" 2 =20500
0 0 26 2(200m™) 2
There is a 50-50 chance that the particle will be found to the left of the origin, which agrees with the fact
that the wave function is symmetric about the y-axis.

100m 5 _
(iii) P :.[ AP P dx
0.500 m

Y
EVALUATE: There is little chance of finding the particle in regions where the wave function is small.

A (2200 m)(1.00 m) _ ,-2(2.00 m™)(0.500 m)y _%(8—4 )= 00585

Y(x)

Figure 40.10

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



40-4 Chapter 40

2,2
L . h
40.11.  IDENTIFY and SET UP: The energy levels for a particle in a box are given by £, = ;l 7
m
34 2
EXECUTE: (a) The lowest level is for n=1, and E, = (1)(6-626x10 7" 1-5) =1.6x107%7 J.

8(0.20 kg)(1.3 m)?

[ —67
(b) E= %mv2 SO v= /E = % =1.3x107> m/s. If the ball has this speed the time it
m . g

would take it to travel from one side of the table to the other is

z=1'3—’3‘;:1.0x1033 5.
1.3x107>% mys
h2
© By =5, Ey=4E;, so AE=E, ~ ;=3 =3(1.6x107%7 1) =4.9x107%" J.
m

(d) EVALUATE: No, quantum mechanical effects are not important for the game of billiards. The discrete,
quantized nature of the energy levels is completely unobservable.

40.12. IDENTIFY: Solve Eq. (40.31) for L.
SET UP: The ground state has n=1.

oo (6.626 x1073* J-5)
J8mE, \/8(1.673 x 10727 kg)(5.0x10° eV)(1.602 x 107" J/eV)

EVALUATE: The value of L we calculated is on the order of the diameter of a nucleus.
40.13. IDENTIFY: An electron in the lowest energy state in this box must have the same energy as it would in the
ground state of hydrogen.

EXECUTE: L= =64x10 " m

nh?
8ml?
EXECUTE: An electron in the ground state of hydrogen has an energy of —13.6 eV, so find the width

SET UP: The energy of the n™ level of an electron in a box is E, =

corresponding to an energy of E; =13.6 eV. Solving for L gives
h (6.626 X104 J -5)
\J8mE, \/8(9.1 1x107 kg)(13.6 eV)(1.602 x 107" J/eV)

EVALUATE: This width is of the same order of magnitude as the diameter of a Bohr atom with the
electron in the K shell.

=1.66x10""" m.

40.14.  IDENTIFY and SET UP: The energy of a photon is £ = Af = h%. The energy levels of a particle in a box

are given by Eq. (40.31).

8 2
G010 Y _y 63x1071 ). AE:h—z(nf—nf).
(122x10™° m) 8mL

. :\/hz(nlz —n) :\/ (6.63x107* J.5)2(22 —12)
8SmAE 8(9.11x1072" kg)(1.63x107'8 J)
(b) The ground state energy for an electron in a box of the calculated dimensions is
P h? _ (6.63x107* J-s)?
8mL?  8(9.11x107>! kg)(3.33x107!% m)?
photon energy), which does not correspond to the —13.6 eV ground state energy of the hydrogen atom.

EXECUTE: (a) E =(6.63x107*J.s)

=3.33x107"" m.

=543x107" 1 =3.40 eV (one-third of the original

EVALUATE: (c) Note that the energy levels for a particle in a box are proportional to n?, whereas the

energy levels for the hydrogen atom are proportional to —%. A one-dimensional box is not a good model
n

for a hydrogen atom.
40.15. IDENTIFY and SET UP: Eq. (40.31) gives the energy levels. Use this to obtain an expression for E, — E;

and use the value given for this energy difference to solve for L.
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: * . , §
EXECUTE: Ground state energy is E; = 8—2; first excited state energy is E, = .
mL

. The energy
ml?

, , L S 3
separation between these two levelsis AE=FE, - E; = 5. This gives L=h, | ——=
8mL 8mAE

3
8(9.109 x 107! kg)(3.0 eV)(1.602 x 107" J/1 eV)

EVALUATE: This energy difference is typical for an atom and L is comparable to the size of an atom.

40.16. IDENTIFY: The energy of the absorbed photon must be equal to the energy difference between the two states.
252

=6.1x10""" m=0.61 nm.

L=6.626x10"* J-s\/

The ground state energy is

SET UpP and EXECUTE: The second excited state energy is E3 = ol
m
252 252
h . Ax°h®  h
E = 7[—2 E;=1.00 eV, so £E5=9.00 eV. For the transition AE = ”—2 L ZAE.
2mlL mL A
-15 8
1=£= (4.136 107" eV -5)(2.998 x10° m/s) 15510~ m =155 nm.
AE 8.00 eV

EVALUATE: This wavelength is much shorter than those of visible light.
40.17. IDENTIFY: Ifthe given wave function is a solution to the Schrodinger equation, we will get an identity
when we substitute that wave function into the Schrédinger equation.
. . 2 . (nmx) . . .
SET UpP: We must substitute the equation ¥(x,?) = 7 sm(Tje E4M into the one-dimensional

2 22
Schrédinger equation —h—dLgx) +U(x)w(x)=Ey(x).
2m  dx

2 2
EXECUTE: Taking the second derivative of W(x,¢) with respect to x gives % = —(%) W(x,1).
X

o . 7 d*y(x) w2 (nx )
Substituting this result into —— > +U@)y(x)=Ey(x), weget —| — | ¥Y(x,0)=EV¥(x,1)
2m  dx 2m\ L

2
which gives E, = ;—(%) , the energies of a particle in a box.
m

EVALUATE: Since this process gives us the energies of a particle in a box, the given wave function is a
solution to the Schrodinger equation
40.18.  IDENTIFY: Findx where y; is zero and where it is a maximum.

2 . (#nx
SET UP: =, [—sin| — |.
1 \/; [ 17 j

EXECUTE: (a) The wave function for n=1 vanishes only at x=0 and x=L intherange 0<x< L.
(b) In the range for x, the sine term is a maximum only at the middle of the box, x = L/2.

EVALUATE: (c) The answers to parts (a) and (b) are consistent with the figure.
40.19. IpENTIFY and SET UP: For the n =2 first excited state the normalized wave function is given by

2 . (2 2 . 2 .
Eq. (40.35). y,(x) = 7 sm(%). 72 (x)|2 dx = Zsm2 (%) dx. Examine |y, ()c)|2 dx and find where
it is zero and where it is maximum.
EXECUTE: (a) |z//2|2 dx =0 implies sin (z—zxj =0

%:m, m=0,1,2, ...: x=m(L/2)

For m=0, x=0; for m=1, x=L/2; for m=2, x=1L
The probability of finding the particle is zero at x=0, L/2, and L.
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; (2
(b) |y/2|2 dx is meximum when sin (?j — 41

% —m(w/2), m=1,3,5, ...; x=m(L/4)

For m=1, x=L/4; for m=3, x=3L/4
The probability of finding the particle is largest at x = L/4 and 3L/4.
(c) EVALUATE: The answers to part (a) correspond to the zeros of |(//| 2 shown in F igure 40.12 in the

textbook and the answers to part (b) correspond to the two values of x where |1,//| % in the figure is maximum.

dzl//

40.20. IDENTIFY: Evaluate F and see if Eq. (40.25) is satisfied. y/(x) must be zero at the walls, where U — oo.
X

SET UP: isink)c =kcoskx. icosloc = —ksin kx.
dx dx

d2(//

EXECUTE: (a) F =—k*y, and for w to be a solution of Eq. (40.25), K* = Ezh—’?
X

(b) The wave function must vanish at the rigid walls; the given function will vanish at x =0 for any £,
but to vanish at x =L, kL = nz for integer n.
2 242
h
EVALUATE: From Eq. (40.31), E, = ”—Lz
m
Eq. (40.32), except for a different symbol for the normalization constant
40.21.  (a) IDENTIFY and SET UP: = Acoskx. Calculate d 1//2/dx2 and substitute into Eq. (40.25) to see if this

equation is satisfied.

so k, = nL—” and y = Asinkx is the same as y, in

nody
EXECUTE: Eq. (40.25): — =FE
d ) 87°m dx’

W g(ksine) = — dksin
dx

2
d—‘g’ = — Ak(k coskx) = — Ak cos kx
dx
2
Thus Eq. (40.25) requires — 5 (—Ak2 coskx) = E(Acoskx).
87°m
2,2
This says Wk =E; k= ZmkE = 2mE
87%m (h27) h

. . . 2mE
w = Acoskx is a solution to Eq. (40.25) if k = 7

(b) EVALUATE: The wave function for a particle in a box with rigid walls at x=0 and x =L must
satisfy the boundary conditions =0 at x=0 and =0 at x=L. y(0)= Acos0= A4, since cos0=1.
Thus  isnot 0 at x =0 and this wave function isn’t acceptable because it doesn’t satisfy the required
boundary condition, even though it is a solution to the Schrédinger equation.
40.22. IDENTIFY: The energy levels are given by Eq. (40.31). The wavelength A of the photon absorbed in an
. o "y h
atomic transition is related to the transition energy AE by A= e
SET UP: For the ground state n =1 and for the third excited state n = 4.
EXECUTE: (a) The third excited state is n =4, so
2 ~34 2
aE=@on L DOGCAO TS 56,07y 361 ev.
8mL™  8(9.11x107"" kg)(0.125x10™" m)
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he  (6.63x107* 1-5)(3.0x10° m/s)
AE 5.78x10717 J

EVALUATE: This photon is an x ray. As the width of the box increases the transition energy for this
transition decreases and the wavelength of the photon increases.

(b) A= =3.44 nm

40.23.  IDENTIFY and SETUP: A= h = L The energy of the electron in level n is given by Eq. (40.31).
p N2mE
* h
EXECUTE: (a) £j=—— = 4 =————=2L=23.0x10""" m)=6.0x10""" m. The wavelength
8mL 2mh?/8mL?

34
is twice the width of the box. p; = . = (6:63x10"J:5)

_ 24
p 60x100 m =1.1x107"" kg-m/s.

4h?
) E, = Sl =>A,=L=3.0x 107 m. The wavelength is the same as the width of the box.
m

h i}
pr=>-=2m=22x10 2 kg - mis.
2

2
(©) E5= 89hL2 == %L =2.0%x107"" m. The wavelength is two-thirds the width of the box.
m

py=3p; =33x1072* kg-my/s.

th state, p, =np;.

EVALUATE: In each case the wavelength is an integer multiple of A/2. In the n
40.24. IDENTIFY: To describe a real situation, a wave function must be normalizable.

SET Up: |l,V|2 dV is the probability that the particle is found in volume dV. Since the particle must be

somewhere, y must have the property that “ l//|2d V' =1 when the integral is taken over all space.

EXECUTE: (a) In one dimension, as we have here, the integral discussed above is of the form

fw|y/(x)|2dx =1.

2ax |
ear

=o0. Hence this wave

(b) Using the result from part (a), we have J.OO (™) dx = Jw > dx = 5
—o0 —00 a

function cannot be normalized and therefore cannot be a valid wave function.
(c) We only need to integrate this wave function of 0 to oo because it is zero for x < 0. For normalization we

o0

2 2

A A
=—, which gives — =1, so 4=+/2b.
2 VS oy

have 1= |yPdx =" (4e™) dx = [ A% dx = A
—o0 4 0 0 -2b

EVALUATE: If b were negative, the given wave function could not be normalized, so it would not be allowable.
2 12

40.25. IDENTIFY: Compare _2_d L4
m

F +Uy to Ey and see if there is a value of k for which they are equal.
X

2
SET UP: d—zsinkx =k’ sin k.

dx
-n* d?
EXECUTE:  (a) Eq. (40.23): —— Y+ Uy =Ey.
2m dx
-n* d* n*k? n*k?
Left-hand side: ———-(A4sinkx)+UyAsinkx = Asinkx +UgAsinkx =| ——+ U, |y. But
2m dx? m 2m
2k2 2,2

T +Uy>Uy>E if k isreal But + U, should equal E. This is not the case, and there is no k
m

for which this |u//|2 is a solution.
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40.26.

40.27.

40.28.

40.29.

2,2
(b) If E >U,, then 'k
2m

+U, = E is consistent and so i = Asin kx is a solution of Eq. (40.23) for this case.

EVALUATE: For a square-well potential and E <U,, Eq. (40.23) with U =U,, applies outside the well

and the wave function has the form of Eq. (40.40).
2

IDENTIFY: /Izﬁ. pis related to E by E=2 ,u.
P 2m
SETUP: For x>L, U=U,. For 0<x<L, U=0.
h
EXECUTE: For O0<x<L, p=+2mE =.,2m(3U,) and 4., =————. For x> L,
p ( 0) in 2m(3U0)

h h .

p= \/Zm(E—UO) = \/Zm(ZUO) and A, = = . Thus, the ratio of the

2m(E-Ug)  /2m(2U,)

wavelengths is

Aout _ A2mB3Ug) \f
Ain 2m(2U0

EVALUATE: For x> L some of the energy is potential and the kinetic energy is less than it is for
0<x< L, where U =0. Therefore, outside the box p is less and A is greater than inside the box.

IDENTIFY: Figure 40.15b in the textbook gives values for the bound state energy of a square well for
which Uy =6E| pw-

2h2
SETUP: FE =”—.
1-IDW L2

z*h’ -19
EXECUTE:  E; =0.625E| py =0.625——; E; =2.00eV =3.20x10"" J.

2mL

1/2
L=rh 0.625 =3.43x10""" m
2(9.109x107! kg)(3.20x107"7 1)

EVALUATE: As L increases the ground state energy decreases.
IDENTIFY: The energy of the photon is the energy given to the electron.
SET UP: Since Uy =6E pyw we can use the result E; =0.625E| |y from Section 40.4. When the
electron is outside the well it has potential energy U, so the minimum energy that must be given to the
electronis Uy —E; =5.375E pw.
EXECUTE: The maximum wavelength of the photon would be

4 e he _ 8mlic _ 8(9.11x 103 kg)(1.50 1072 m)*(3.00 < 10% m/s)

o—E1  (5375)hY8mLY) (5375 (5.375)6.63 1071 J.5)

—l.22v 106

EVALUATE: This photon is in the infrared. The wavelength of the photon decreases when the width of the

well decreases.
d? 2mE
IDENTIFY: Calculate d—lél and compare to _;ln_z v.
X

SET Up: isinkx = kcoskx. icoskx = —ksin kx.
dx dx

2mE

. E
EXECUTE: Eq. (40.37): = A4sin X+ Bcos

d? 2mE\ . N2mE 2mE 2mE _ -2mE . o
av_ —A( m jsm n x—B( m jcos M= = (w). This is Eq. (40.38), so this y is a
dx* n? n n? n n?

solution.

EVALUATE: y in Eq. (40.38) is a solution to Eq. (40.37) for any values of the constants 4 and B.

X.
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40.30.

40.31.

40.32.

40.33.

IDENTIFY: The longest wavelength corresponds to the smallest energy change.
2

SET Up: The ground level energy level of the infinite well is Ej pw :87,
m

and the energy of the
photon must be equal to the energy difference between the two shells.

EXECUTE: The 400.0 nm photon must correspond to the n=1 to n =2 transition. Since Uy =6E|_ pw,

we have E, =2.43E| pw and E; = 0.625E,_;pyw. The energy of the photon is equal to the energy

2
difference between the two levels, and E_pw = PL which gives
m

2
E, =E,-E = % =(2.43-0.625)E pw = 1521—51; Solving for L gives

I [(1.805)h4  |(1.805)(6.626 x10>* J-5)(4.00x 10~ m) 4681010 m— 0.468
8mc 8(9.11x107! kg)(3.00 x 10® m/s) ' ' '

EVALUATE: This width is approximately half that of a Bohr hydrogen atom.

IDENTIFY: Find the transition energy AE and set it equal to the energy of the absorbed photon. Use

E = hc/A, to find the wavelength of the photon.

SETUP: U, =6E py, asinFigure 40.15 in the textbook, so E; =0.625E| pw and E; =5.09E| pw
242

In this problem the particle bound in the well is a proton, so m =1.673 x 1077 kg.

Vs
with E;_ = .
1-1IDW o2

*n? 72(1.055x1074 J-5)?

2ml2 2(1.673x1072 kg)(@.0x10"" m)?
is AE = Ey — E; = (5.09—0.625)E, 1w = 4465E, ;pw. AE =4.465(2.052x1072 1)=9.162x107 J
The wavelength of the photon that is absorbed is related to the transition energy by AE = hc/A, so

he  (6.626x107* J-5)(2.998 x10° m/s)

A=—— 12
AE 9.162x10"“J

EVALUATE: The wavelength of the photon is comparable to the size of the box.

2m(Uy—E
IDENTIFY: The tunneling probability is 7' = Ge 2L with G = 16£(1 —Ej and x = %. S0
0 0

EXECUTE: E| py = =2.052x107'% J. The transition energy

=22x10""* m=22 fm.

E E _2«’2"’(U0_E)L
T=16—|1-—|le h .
U\ Uy

SETUP: Uy =30.0x10° eV, L=2.0x10"" m, m=6.64x107" kg.
EXECUTE: (a) Uy—E=1.0x10% eV (£ =29.0x10° eV), T = 0.090.

(b) If Uy—E =10.0x10° eV (E =20.0 x10° eV), T = 0.014.

EVALUATE: T'is less when Uy —E s 10.0 MeV than when U, — E is 1.0 MeV.

IDENTIFY: The tunneling probability is 7 = léi{l —ﬁje” 2mUo=E)/h,
0 0

SET Up: £ _60eV

U, 11.0eV
EXECUTE: (a) L=0.80x10" m:

7= 16[ 6.0eV J(l 6.0ev ]ez(o‘sox 107 m)y29.11x 10" ke)(8.0x 107° 1)/1.055x 107 T - 5 —44x10°°

and E-Uy=5eV=80x10"" 1.

11.0evV )l 11.0eV

() L=040x10" m: T=42x10"*
EVALUATE: The tunneling probability is less when the barrier is wider.
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