《电气控制与 PLC》实验指导书

可编程控制器的实验遵照循序渐进的原则,由浅入深的分为上机练习,参照例程序的 PLC 应用练习实验和 PLC 控制系统设计的综合实验等部分。

PLC 实验方法有两种,一种是用 PLC 实验装置进行实验和应用程序的开发;另一种是 用普通 PLC 外加若干导线进行简易的开发和实验。PLC 实验装置具有直观,使用方便的优 点,通常配有各种工业控制模板,可以形象地模拟工业现场控制,尤其是导线的插拔连接形 式,适用于教学的重复使用。若无 PLC 实验装置,也可直接使用 PLC 配以外部连接导线, 给出必要的输入信号进行实验,并且可以利用 PLC 自身的输出指示观察 PLC 运行结果。本 章以 PLC 实验装置的应用为主,研究 PLC 的实验方法。

1 PLC-S7-JZ 型实验装置

PLC 实验装置的生产厂家众多,型号各异,但基本原理和结构、设计思想大致相同。 为适合教学使用,实验装置一般采用插头、插座连接结构,并制成各种控制模板供练习使用。 本节以河南机电高等专科学校电气工程系自动化研究所研制的 PLC-S7-JZ 型实验装置为例, 介绍 PLC 实验装置的结构原理和使用方法。

1.1.1 实验装置的结构和原理

PLC-S7-JZ 型实验装置由 PLC、模拟控制板、通用器件板、工程环境等四部分组成。本 装置采用 24 点的小型 PLC 为基本单元,实验装置的结构如图 1.1 所示。下面简介 PLC 实验 装置的结构原理及使用方法。

图 1.1 PLC-S7-JZ 实验装置

1. 通用器件板

通用器件板主要由 I/O 点,发光二极管指示及开关等组成。其电源开关为 PLC 提供 220V 供电电源,并为 24V/1A 直流电源供电,模板结构如图 1.2 所示。

(1) 输入点 (INPUT)

INPUT 部分有 I0.0~I1.5 共 14 个输入点 (与 PLC 的输入点相连),其中 1M、2M 点为输入点的公共接地端,如果用户使用的输入点数不超过 8 点时只需 1M 接地,2M 悬空即可, 使用点数多时 2M 也必须接地。另外要用到的输入点要与直流电源+24V 端连接。

(2)输出点(OUTPUT)

OUTPUT 部分有 Q0.0~Q1.1 共 10 个输出点(与 PLC 的输出点相连),其中 1L、2L、3L 使用时要接电源的高电平,实验时一般接 24V 电源正极(实验装置提供),如果接外部负载 时要结合 PLC 对外输出电压范围和实际负载合理的选定电源。若用户用的输出点数不超过 4 点,只需 1L 接高电平,不超过 7 点只需 1L、2L 接高电平,超过 7 点时 1L、2L、3L 全接 高电平。

(3)通用器件板中间部分为4个钮子开关和4个指示灯(发光二极管),分别为PLC

提供开关量输入信号和输出状态指示。钮子开关可以与模拟控制板配合使用,还可以单独使 用。

(4) 电源部分

通用器件板右侧是电源部分,设有交流供电电源开关和 24V/1A 直流电源的正、负极插座。

(5) BCD 码拨盘

本装置设有 3 位 BCD 码拨盘,分别对应个、十、百位数,通过插拔式连接导线,可以将 BCD 码拨盘的 8、4、2、1 端与 PLC 的输入端点连接起来,从 PLC 外部向 PLC 内部定时器、计数器等送入所需要 3 位以下十进制数。

(6)通用器件板与模拟控制板的联系

模拟控制板给出各种控制对象的示意图,安装了一些开关、指示灯、I/O 插座等器件。 通用器件板上的 INPUT 及 OUPUT 端口与模拟控制板上的输入、输出信号端口按照一定规 律连接起来,能够把控制对象板的输入信号送至 PLC,也可以把 PLC 的输出送到控制对象 板,使模拟控制板能够在 PLC 的控制下工作。

2. 模拟控制板的工作原理

模拟控制板上的开关有点动按钮和钮子开关两种开关形式。模拟控制板上的开关均为双 联开关,开关有效时,PLC 输入有效,同时输入指示灯(发光二极管)发光。模拟控制板 上的负载均采用发光二极管作为 PLC 输出指示,当模拟控制板上负载端得到高电平(+24 伏)时发光二极管发光,低电平时熄灭。

模拟控制板输入点结构与输出点结构工作原理如图 1.3 所示:

图 1.3 实验模板电路原理图

3. 工程环境

工程环境的设立主要是为了驱动一定功率的负载,工程环境部分由低压断路器、熔断器、交流接触器、指示灯、按钮、接线端子排等低压电器元件组成。一定功率负载的驱动, 更加接近工程实际。

1.1.2 通用器件板及模拟控制板的连接

1. 通用器件板的连接

通用器件板使用时,向 PLC 的输入端点及 PLC 的输出负载提供 24V 的直流电源,参照 图 1.4 导线连接举例,PLC 输入的公共端 1M、2M 接 24VDC 的负极,PLC 输出的公共端 1L、2L 接 24VDC 的正极。开关组的 COM 端接 24VDC 的正极,通过接通开关的方式将+24V 送到 PLC 的输入点。负载组(发光二极管)的 COM 端接 24VDC 的负极,通过从 PLC 导 通的 Q 点(输出点)得到+24V 电源,使发光二极管工作。BCD 码拨盘的公共端 A 接 24VDC 的正极,8421 编码端分别接到 PLC 的各个输入点,以实现 BCD 码外部数据的输入。

1.4 通用器件板连接方法

模拟控制板使用时,需要通过通用器件板,向模拟控制板提供PLC的I/O信号及24V

直流电源,模拟控制板与通用器件板之间的连接关系如图1.5所示。

图 1.5 负载板与通用器件板的连接方法

模拟控制板的 24V 电源端与通用器件板的直流 24V 电源正、负极输出连接,以保障模 拟控制板电路的正常工作。若仅用 PLC 的输出信号时,也可以只将模拟控制板的 24V 直流 电源负极与通用器件板的电源负极相连接(正极无须连接)。其它信号端子分别接至通用器 件板已分配 I/O 端点。完成了正确的接线后,可以进行程序的运行显示。

1.2 SIMATIC 使用方法和 PLC 的应用练习

本节首先研究 SIMATIC 指令系统的基本操作方法,然后进行 PLC 的练习实验。本节给出了 PLC 控制系统实验要求的例程序,参考电路等 PLC 练习实验所需要的所有资料,可以通过程序输入、调试、运行,逐步掌握 PLC 实验的基本方法。

1.2.1 基本操作练习

1. 实验目的

- (1) 练习使用 S7-200 编程软件, 了解 PLC 实验装置的组成。
- (2)掌握用户程序的输入和编辑方法。
- (3) 熟悉基本指令的应用。

(4) 熟悉语句表指令的应用及其与梯形图程序的和转还。

2. 实验内容

(1) 输入图 1.6 所示的梯形图,并转换成对应的语句表指令(也可结合教材第5章习

题练习)。

(2)为梯形图 1.6 中段 1 注释,并用符号表为 IO.0、IO.1、QO.0 添加符号名(符号名可任意设定)。

(3) 练习程序的编辑、修改、复制、粘贴的方法。

(4) 将图 1.6 中程序改成图 1.7,并转换成语句表程序,分析 OLD、ALD 语句用法。

(5)参考 5.1.1 例题 5.5,练习栈操作指令的使用方法。

(6)参考 5.1.2,练习定时器指令及参数的输入方法。

(7)练习系统块设置的方法。

图 1.6 梯形图练习 1

图 1.7 梯形图练习 2

- 3. 实验步骤
- (1)开机(打开计算机电源,但不接PLC电源)。
- (2)进入 S7-200 编程软件 。
- (3)选择语言类型(SIMATIC或IEC)。
- (4) 输入 CPU 类型。
- (5)由主菜单或快捷按钮输入、编辑程序。

(6)进行编译,并观测编译结果,修改程序,直至编译成功。

4. 实验报告内容

- (1) 以图 1.6 为例,总结梯形图输入及修改的操作过程。
- (2) 写出梯形图添加注释及符号名的操作过程。
- (3) 总结 OLD 、ALD 指令和栈操作指令的使用方法。
- (4) 简述系统块设置的方法。

1.2.2 正次品分拣机

1. 实验目的

- (1)加深对定时器的理解,掌握各类定时器的使用方法。
- (2)理解企业车间产品的分捡原理。

2. 实验器材

- (1)实验装置(含 S7-200 24 点 CPU)一台。
- (2)正、次品分拣模板一块。
- (3)连接导线若干。

3. 模拟控制板的控制要求及参考

(1) 控制要求

①用启动和停止按钮控制电动机 M 运行和停止。在电动机运行时, 被检测的产品(包

括正、次品)在皮带上运送。

①产品(包括正、次品)在皮带上运送时,S1
(检测器)检测到的次品,经过5秒传送,到达次品
剔除位置时,启动电磁铁Y驱动剔除装置,剔除
次品(电磁铁通电 0.1秒),检测器S2检测到的次
品,经过3秒传送,启动Y,剔除次品;正品继

图 1.8 正次品分拣模拟控制板

图 1.9 正次品分拣流程图

次品

(2)参考电路和程序

- PLC I/O 端口分配及参考电路图:
- SB1 I0.0 M 启动按钮

SB2 I0.1 M 停止按钮

SQ1	I0.2	检测站1,	SQ2	I0.3	检测站2

M Q0.0 电动机(传送带驱动),Y Q0.1 次品剔除

PLC

图 1.11 正次品分拣机参考程序

4. 实验内容及要求

- (1) 按参考电路图完成 PLC 电路接线 (配合通用器件板开关元器件)。
- (2) 输入参考程序并编辑。
- (3)编译、下载、调试应用程序。

(4)通过实验模板,显示出正确运行结果。

注意:程序上、下载时,必须给PLC上电,并将CPU置于STOP状态。

5. 思考练习

(1)分析各种定时器的使用方法及不同之处。

(2)总结程序输入、调试的方法和经验。

(3) 试将 S1 作为产品计数的检测装置,对日产量进行统计。

(4)程序要求增加皮带传送机构不工作时,检测机构不允许工作(剔除机构不动作), 编写梯形图控制程序。

1.2.3 交通灯自动控制

1. 实验目的

- (1) 练习定时器、计数器的基本使用方法。
- (2) 掌握 PLC 的编程和调试方法。
- (3) 对应用 PLC 解决实际问题的全过程有个初步了解

2. 实验设备

- (1) 编程器 1台(PC机)。
- (2)实验装置1台(含S7-20024点CPU)。
- (3) 交通灯实验模板一块。
- (4)导线若干。

图 1.12 交通灯模拟控制板

(83 88 8

HL1 HL2 HL3

⊕ ⊕ H11 H12

3. 控制要求及参考

交通路口红、黄、绿灯的基本控制要求如下:

路口某方向绿灯显示(另一方向亮红灯)10秒后,黄灯以占空比为50%的一秒周期 (0.5秒脉冲宽度)闪烁3次(另一方向亮红灯),然后变为红灯(另一方向绿灯亮、黄灯闪 烁),如此循环工作。

PLC I/O 端口分配:

SB1	I0.0	起动按钮
SB2	I0.1	停止按钮
HL1 (HL7)	Q0.0	东西红灯

HL2 (HL8)	Q0.1	东西黄灯
HL3 (HL9)	Q0.2	东西绿灯
HL4 (HL10)	Q0.4	南北红灯
HL5 (HL11)	Q0.5	南北黄灯
HL6 (HL12)	Q0.6	南北绿灯

PLC 参考电路:

图 1.13 红绿灯控制 PLC 电气原理图

- 4. 实验内容及要求
- (1) 按参考电路图完成 PLC 电路接线 (配合通用器件板开关元器件)。
- (2) 输入参考程序并编辑。
- (3)编译、下载、调试应用程序。
- (4)通过实验模板,显示出正确运行结果。

注意:程序上、下载时,必须给PLC上电,并将CPU置于STOP状态。

5. 思考练习

- (1) 要实现一个简单的过程控制,程序编制的思路及步骤有哪些?
- (2) 定时器、计数器预置值如何设定输入?如何修改?
- (3) 简述上机操作步骤。

(4) 增设某个方向直通的功能。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容 。如要下载或阅读全文,请访问:

https://d.book118.com/145114341004012003