ASPEN物性方法

1物性方法 2从数据库中检索纯物质的物性参数 3定义物性集(查看各流股物性) 4物性估计Property estimation 5物性分析Property analysis 6参数拟合

Aspen 提供的物性参数

物性	代号	物性	代号
分子量	MW	临界压缩因子	ZC
临界温度	TC	偏心因子	OMEGA
临界压力	PC	偶极距	MUP
临界体积	VC	回转半径	RGYR

Aspen 提供的物性参数

物性	代号	参数个数
ANTOIN蒸汽压关联式参数	PLXANT	9
理想气体热容关联式参数	CPIG	11
WASTON关联式参数	DHVLWT	5
RACKETT液体容积方程关联式	RKTZRA	1
CAVETT综合方程参数	DHLCAT	1
CAVETT综合关联式参数	PLCAVT	4
SEALCHASD-HILDEBRNUD方程参数	VLCVT1	The second
标准液体容积方程参数	VLSTD	3
水溶解度方程参数	WATSOL	5
AUDRADE液体粘度关联式参数	MULAND	

Aspen 提供的物性参数

物性	代号	物性	代号	
生成热	DHFORM	API重度	API	
生成自由能	DGFORM	溶解度参数	DELTA	
沸点	TB	等张比容	PARC	
标准沸点下的 摩尔体积	VB	气体粘度	MUVDIP	
汽化热	DHVLB	液体粘度	MULAND	
凝固点	TEP	导热系数	KVDIP	
相对密度	SG	表面张力	SIGDIP	

Aspen提供的物性预测模型 理想模型 状态方程模型 活度系数模型 特殊模型

在一个模拟中,所执行的主要热力学性质计算是相平衡。在一个平衡的系统的汽液相中, 对于每个组分i最基本的关系是:

 $f_i^v = f_i^{\ l} \tag{1}$ ±+:

 f_i^v = 组分i在汽相中的逸度 f_i^l = 组分i在液相中的逸度

应用热力学提供了两种通过相平衡关系根据可测量的状态变量来描述逸度的方法,即状态方程方法和活度系数方法。

在状态方程方法中: $f_{i}^{v} = \varphi_{i}^{v} y_{i} p$ (2) $f_{i}^{l} = \varphi_{i}^{l} x_{i} p$ (3) 同时:

$$\ln \varphi_i^{\alpha} = -\frac{1}{RT} \int_{\infty}^{V\alpha} \left[\left(\frac{\partial P}{\partial n_i} \right)_{T,V,n_{iej}} - \frac{RT}{V} \right] dV - \ln Z_m^{\alpha}$$
(4)

(5)

(6)

在活度系数方法中: $f_i^{\nu} = \varphi_i^{\nu} y_i p$ $f_i^{l} = x_i \gamma_i f_i^{*,l}$

其中: φi^v依照方程4计算,

- γ_i = 组分i的液相活度系数。
- $f_i^{*,l}$ = 纯组分i在混合物温度下的液相逸度。

对于溶剂:一个溶剂的参考状态被定义为在系统的温度和压力下液态的纯组分。根据这 个定义,当x_i接近1时,γ_i接近1。

液相参考逸度 $f_i^{*,i}$ 被计算为:

 $f_i^{*,l} = \varphi_i^{*,v}(T, P_i^{*,l}) P_i^{*,l} \Theta_i^{*,l}$

(28)

其中:

$$= \exp\left(\frac{1}{RT} \int_{p_i^{*,l}}^p V_i^{*,l} dp\right)$$

在低压下, Poynting 校正系数接近1, 可被忽略。

理想物性方法 IDEAL SYSOPO

状态方程 基于Lee方程的物性方法 基于PR方程的物性方法 基于RK方程物性方法

活度系数模型 基于NRTL的物性方法 基于UNIFAC的物性方法 基于UNIQUAC的物性方法 基于WILSON的物性方法

◆物性方法选择◆经验选取

对于许多组分,ASPEN PLUS数据库储存 了所有必需的参数。由于内置的纯组分参数 是和模拟引擎结合在一起,页面上不能自动 出现可用的参数

欲观察各组分的物性,可采用如下两种方法:

1 将计算结果以*.rep的形式输出,在此报告中 可观察组分物性参数。

2采用工具栏中(TooL)的检索参数结果 (Retrieve Parameters results)功能

1在component specification输入需检索的物质 名称

🍼 Specifications 🛛 🗖 🛄		
🖃 🔂 Setup	*	✓Selection Petroleum Nonconventional ✓Databanks
Specifications		
Simulation Options		
💋 Stream Class		Component ID Type Component name Formula
🗘 Substreams		CCL4 Conventional CARBON-TETRACCCL4
□ Gabscreams	Ε	CH2CL4 Conventional DICHLOROMETH4CH2CL2
Custom Units		CHCL3 Conventional CHLOROFORM CHCL3
Report Options		<u>*</u>
🗄 🔂 Components		
Specifications	<u>-</u> -	
Assay/Blend		
Light-End Properties		
🕀 💼 Petro Characterization		

2 在工具菜单栏上点击TooL,并选Retrieve Parameter results(检索参数结果)

Aspen Plus - purentproperty - [Components Specifications - I	Data Browser]
💵 File Edit View Data Too	ls Run Plot Library Win	dow Help
D 28 b b b b	Analysis	
FITALAND	Retrieve Parameter Results	
	Aspen Split	
Specifications	Icon Editor	xII
Setup	Variable Explorer	onventional J J Databanks
Simulation O	Next	F4
Stream Class	Options	inal CARBON-TETRACCCL4
Units-Sets	E CH2CL4	Conventional DICHLOROMETH/CH2CL2
Custom Units	CHCL3	Conventional CHLOROFORM CHCL3
🧭 🧭 Report Options	<u>*</u>	
Components		
Specifications		
Assay/Blend		
Light-End Propert	ies	

3 在弹出的对话框中单击"OK",数据浏览器 自动打开Properties Parameters results(检 索参数结果)文件夹

🍼 Specifications 💽 主 😫	
🖃 🔂 Setup	✓Selection Petroleum Nonconventional ✓Databanks
Specifications	Define components
Stream Class	Component ID Type Component name Formula
E Substreams	CCL4 Conventional CARBON-TETRAC CCL4
Units-Sets	CH2CL4 Conventional DICHLOROMETHACH2CL2
Custom Units	CHCL3 Conventional CHLOROFORM CHCL3
Report Options	
Components	
Specifications	Retrieve Parameter Results
Assay/Blend	
Light-End Properties	Aspen Plus does not display all property parameters on the
🕀 💼 Petro Characterization	parameters for the components and property methods defined
Pseudocomponents	in the simulation.
Attr-Comps	You will lose any results that are currently loaded. You can recepted them by running the simulation again
Henry Comps	
UNIFAC Groups	Iou can view the results on the Properties Parameters Results form.
Comp-Groups	- OK Cencel Help
🕀 🔂 Comp-Lists	
Properties	
Specifications	Component ID. If data are to be retrieved from databanks, enter either Component Name or Formula.
Property Methods 🔻	

4 在数据浏览器的树目录中,从results文件夹中选择Pure component子(纯组分表),存有一个所有标量参数页面和一个温度相关参数页面

Setup Scalar T-Dependent Components Properties Properties Pure component scalar parameters Parameter Unit Data set Component Component Parameters Parameters Parameters Pure component Component Component OHFORM KCAL/MOL 1 0 0 0 Physical Structure Pure Component Component Component Component OHFORM KCAL/MOL 1 0 0 0 OHVLB KCAL/MOL 1 1 1 1 OUNIFAC Group UNIFAC Group Binary 0 163/365816 </th <th>Setup Scalar T-Dependent Components Properties Properties Property Methods Pure component scalar parameters Property Methods Parameters Parameters Parameters Parameters Phick CAL/MOL 1 0 0 0 Property Methods Parameters Parameters Parameters Parameters Phick CAL/MOL 1 0 0 0 0 Parameters Pure Component Electrolyte Pair DHFORM KCAL/MOL 1 0 0 0 0 Power Structure Pure Component Electrolyte Ternary UNIFAC Group UNIFAC Group DHFVK KCAL/MOL 1 1 1 Ww 1 53.8218 4.93228 119.37704 0.0089358 1.01030344 MV 1 153.8218 84.93228 119.37704 0 0 0 0 0 0 Ww 1 153.8218 84.93228 119.37704 0 0 0 0 0 0 0 0 0 0 0<</th> <th>V Pure Component</th> <th>-</th> <th></th> <th>→ << A </th> <th>•</th> <th>·> 🔼</th> <th>Ì 🙆 🕨</th> <th></th> <th></th> <th></th>	Setup Scalar T-Dependent Components Properties Properties Property Methods Pure component scalar parameters Property Methods Parameters Parameters Parameters Parameters Phick CAL/MOL 1 0 0 0 Property Methods Parameters Parameters Parameters Parameters Phick CAL/MOL 1 0 0 0 0 Parameters Pure Component Electrolyte Pair DHFORM KCAL/MOL 1 0 0 0 0 Power Structure Pure Component Electrolyte Ternary UNIFAC Group UNIFAC Group DHFVK KCAL/MOL 1 1 1 Ww 1 53.8218 4.93228 119.37704 0.0089358 1.01030344 MV 1 153.8218 84.93228 119.37704 0 0 0 0 0 0 Ww 1 153.8218 84.93228 119.37704 0 0 0 0 0 0 0 0 0 0 0<	V Pure Component	-		→ << A	•	·> 🔼	Ì 🙆 🕨			
Components Pure component scalar parameters Operations Pure component scalar parameters Operations Parameters Parameters Operations Parameters Parameters Operations Parameters Parameters Operations Parameters Parameters Parameters Parameters Operations Parameters Parameters Para		⊞	^	Sca	lar T-Deper	ndent					
	✓ Electrolyte Pair ✓ UNIFAC Group	Components Properties Property Methods Property Methods Estimation Molecular Structure Parameters Parameters Pure Component Electrolyte Pair Electrolyte Ternary UNIFAC Group UNIFAC Group Binary Results Pure Component UNIFAC Group Binary Pure Component UNIFAC Group Binary Pure Component UNIFAC Group Binary Pure Component VINIFAC Group Binary Pure Component VINIFAC Group Binary Binary Interaction			Ure component iew: Parameter DHAQFM DHFORM DHFVK DHSFRM DHVLB DLWC DVBLNC HCOM MUP MW OMEGA	scalar parame meters Unit KCAL/MOL KCAL/MOL KCAL/MOL KCAL/MOL KCAL/MOL KCAL/MOL DEBYE	eters Data set 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Component CCL4 0 -22.883825 0 0 7.11134996 1 1 -63.365816 0 153.8218 0 192552	Component CH2CL4 0 -22.81456 0 0 6.77586701 1 1 1 1 -122.73813 1.60089358 84.93228 0.198622	Component CHCL3 0 -24.577243 0 0 7.04628833 1 1 -90.761441 1.01030344 119.37704 0.221902	

V Pure Component	•		~ >>	🛄 🛄 N>	
⊞ <mark>``</mark> Setup		Scalar T-Depend	lent		
E Components		Temperature-depe	ndent correlation p	parameters	
Specifications		View: Parar	meters 🔻	Parameter:	CPIGDP-1
Property Methods		Component	CCL4	CH2CL4	CHCL3
🕀 💼 Estimation		Temperature	к	ĸ	ĸ
🕀 🗂 Molecular Structure		Source	PURE11	PURE11	PURE11
🖻 🔂 Parameters	-	Property units	CAL/MOL-K	CAL/MOL-K	CAL/MOL-K
🕀 🔂 Pure Component	=	Element 1	8.97630649	8.66532913	9.41530525
🕀 🔂 Binary Interaction		Element 2	16.8481895	16.2510748	15.6993408
Electrolyte Pair		Element 3	512.1	1256	928
Electrolyte Ternary		Element 4	11.584026	10.2106621	11.7751027
UNIFAC Group		Element 5	236.1	548	399.6
UNIFAC Group Binary		Element 6	100	100	100
Results		Element 7	1500	1500	1500
Binary Interaction					

2从数据库中检索纯物质的物性参数 应用示例1

1 利用Aspen plus 检索物性参数功能,检索 CCL4 CHCL3 CH2CL2上述三种物质的沸点、临界温度、生成热等物性数据

目的:需了解物流的输出性质时,可以定义一 个物性集,将使用的物性引入物性集中。 步骤: 1在Properties中点击 Prop-Set 2点击New, 3输入新物性集名 4选择"OK"

5在新物性集中选所需物性 6在Set-Up /report Option/ Stream 7点击Property-set 8 将新定义的物性集移入被选物性集中 9重新运行,计算结果可列出新物性

🗸 Results	🔽 🖻 🔽		☑ 🗢 ⇒	<< All	✓ >>	🛄 🛄	(3)	I>
Ele UNI UNI E Caller Data	ectrolyte 📩 IFAC Group IFAC Group sults	Material Display	Vol.% Curves	Format:	irves Pel	tro. Curves	Poly.	m
Analysis Prop-Set HXD PS- V PS- VIE VIE VIE VIE CAPE-OPI CAPE-OPI	s ts DESIGN -1 RMAL PORT L L d EN Packag	Pre Vap Mo Ma Vol Ent	mperature K ssure N/sqm por Frac le Flow kmol/sec ss Flow kg/sec ume Flow cum/se halpy Gcal/hr le Flow kmol/sec ETO-01	200000.0 200000.0 200000.0 0.000 < 0.000 0.028 c < 0.000 -0.102		 显示结界		
✓ Inp ✓ Res FO ✓ Cus 2	out sults Variables stom Strea		cal/mol-K CETO-01	29.44	3		•	

应用示例2

建立新物性集,在计算结果中显示CCL4、 CHCL3、CH2CL2混合物0℃的比热(CpMX)

4物性估计Property estimation 纯组分物性常数的名称及估计方法 如在ASPEN PLUS 数据库中无所需物性参数 则可以:

- ✤ 直接将已有的物性数据输入AspenPlus中
- ✤ 用Property Estimation (性质估计)进行估计
- ♦ 从实验数据中回归,使用Data Regression(数据回

4物性估计Property estimation 纯组分物性常数的名称及估计方法 ◆参数估计所需最少信息如下 标准沸点温度TB 分子量MW 分子结构[最好用General(通用)方法输入]

4物性估计Property estimation 纯组分物性常数的名称及估计方法

Property Estimation (性质估计)使用标准沸点和 分子量来估计许多物性,使用TB 实验值可以大大 减少在估计其它参数中的错误的传播,如果不提供 TB 和MW 但输入一般分子结构, Property Estimation (性质估计)可以估计TB 和MW。

4物性估计Property estimation 纯组分物性常数的名称及估计方法 使用通用General方法确定分子结构 当使用通用General方法描述化合物的原子和键时, ASPEN PLUS 自动生成用于特殊运行估计方法的所 需的官能团

4物性估计Property estimation

首先将运行类型设置为Property Estimation

✓Global ✓Description

Accounting

Diagnostics

Title:		
Units of measurement	Giobal settings	
Input data: METCBA 🕶	Run type: Property Estimation	-
Output results: METCBA	Input mode: Steady-State	
	Stream class: CONVEN	
	Flow basis: Mole	-
	Ambient pressure: 1.01325 bar	-
	Ambient temp.: 10 C	-
	Valid phases:	
	Free water: No	-
	Operational year: 8766 hr	
	Operational year: 8766 hr	

4物性估计Property estimation

在Components输入自定义物质名称

Components 🛛 💌 🔛	✓ ← → << AI ✓ >>	20
 Setup Specifications Simulation Options Substreams 	Selection Petroleum Nonconventional Centerprise Datab	
Costing Options The Costing Options The Costom Units Custom Units Custom Units	Component ID Type Component name A DINXI Conventional	
Components Specifications Light-End Properties		
Moisture Comps		

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: <u>https://d.book118.com/176124024115011003</u>