第三章 描述统计: 数值方法

- 3.1 集中趋势的度量
- 3.2 离散程度的度量
- 3.3 分布形态的度量

学习目标

学习本章后,应该做到:

- 1. 了解数据分布特征主要应从集中趋势的度量、离 散程度的度量、分布形态的度量三个方面进行 测度;
- 2. 理解各种测度值的特点和应用原则;
- 3. 掌握反映数据集中趋势和离散程度的测度方法;
- 4. 掌握反映分布形态的偏态与峰态的含义及测度方法。

3.1 集中趋勢的度量

- 均值
- 众数
- 中位数
- 分位数
- 均值、众数、中位数的关系

一、均值 (mean)

(一) 均值的概念

- 1. 集中趋势的最常用测度值
- 2. 一组数据的均衡点所在
- 3. 体现了数据的必然性特征,消除了偶然因素的影响
- 4. 易受极端值的影响
- 5. 数值均值用于数值型数据,不能用于分类数据和顺序数据 据

2024/12/7

5

(二)均值的算法

1、简单均值(simple mean)

设一组数据为: x_1, x_2, \ldots, x_n

总体均值

$$\mu = \frac{x_1 + x_2 + L + x_N}{N} = \frac{\sum_{i=1}^{n} x_i}{N}$$

$$\bar{x} = \frac{x_1 + x_2 + L + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

•通常用于对未分组的数据计算,

且研究总量取决于各变量值的和

简单均值实例

【例】某班级40名同学统学的考试成绩:

	A	В	С	D	E	F	G	Н	Ι	J
1	64	70	89	64	56	95	98	79	88	88
2	78	89	60	78	68	79	79	95	68	60
3	78	89	99	36	75	84	78	64	78	85
4	85	79	70	84	68	75	89	75	78	75

该班40名同学统计学的平均成绩为:

$$\frac{1}{x} = \frac{\sum x}{n} = \frac{64 + 70 + L + 78 + 75}{40} = \frac{3089}{40} = 77.23(\%)$$

2、加权均值 (weighted mean)

设各组变量值(组中值)为: x_1 , x_2 , ..., x_k 对应的频数为: f_1 , f_2 , ..., f_k

总体均值

$$\mu = \frac{x_1 f_1 + x_2 f_2 + L + x_K f_K}{f_1 + f_2 + L + f_K} = \frac{\sum_{i=1}^{K} x_i f_i}{\sum_{i=1}^{K} f_i}$$

简写

为:

$$\mu = \frac{\sum xf}{\sum f}$$

•适合分组资料的试算。

章本均值
$$\bar{x} = \frac{x_1 f_1 + x_2 f_2 + L + x_k f_k}{f_1 + f_2 + L + f_k} = \frac{\sum_{i=1}^k x_i f_i}{\sum_{i=1}^n f_i}$$

简写

为:

$$\bar{x} = \frac{\sum xf}{\sum f}$$

当: 权数为频率

时

总体均值:
$$\mu = \sum x \frac{f}{\sum f}$$

样本均值:
$$\bar{x} = \sum x \frac{f}{\sum f}$$

加权均值(权数: f) 实例

某班级40名同学统计学的考试成绩:

	A	В	С	D
1	成绩 (分)	頻数 f	组中值 (X,)	$x_i f_i$
2	60以下	2	55	110
3	6 0~70	8	65	520
4	70~80	16	75	1200
5	80~90	10	85	850
6	90~100	4	95	380
7	合 计	40	_	3060

该班40名同学统计学的平均成绩为:

$$\mu = \frac{\sum xf}{\sum f} = \frac{3060}{40} = 76.5(f)$$

加权均值(权数: ∑∫) 实例

	A	В	С	D
1		•		f
2	成绩分组(分)	频率 😽	组中值 <i>x</i>	$x = \frac{\sqrt{\sqrt{x}}}{\sqrt{x}}$
3				<u></u>
4	60分以下	0.05	55	2. 75
5	60~70	0.2	65	13
6	70~80	0.4	75	30
7	80~90	0.25	85	21.25
8	90分以上	0.1	95	9.5
9	合 计	1		76.5

$$\mu = \sum x \frac{f}{\sum f} = 55 \times 0.05 + 65 \times 0.2 + 75 \times 0.4 + 85 \times 0.25 + 95 \times 0.1 = 76.5(\%)$$

12

加权均值

■权数对均值的影响●

甲乙两组各有10名学生,他们的考试成绩及其分布数据如下:

$$\frac{1}{x^{\text{H}}} = \frac{\sum xf}{\sum f} = \frac{0 \times 1 + 20 \times 1 + 100 \times 8}{10} = 82(\text{f})$$

$$\bar{x}$$
Z = $\frac{\sum xf}{\sum f}$ = $\frac{0 \times 8 + 20 \times 1 + 100 \times 1}{10}$ = 12(f)

3.相对数的算术平均数

【例】某公司所属11个企业资金利润率分组资料如下表,要求计算该公司11个企业的平均资金利润率:

	A	В	С	D
1 2	资金利润率(x)%	企业数n	资金总额(万元)f	利润总额(万元)xf
3	6	4	40	2.4
4	10	3	90	9
5	15	4	140	21
6	合 计	11	270	32.4

该公司11个企业的平均资金利润率为:

$$\mu = \frac{\sum xf}{\sum f} = \frac{6\% \times 40 + 10\% \times 80 + 15\% \times 140}{40 + 90 + 140} = \frac{32.4}{270} = 12\%$$

- 权数的选择必须符合该相对数本身的计算公式。
- 权数通常为该相对 数的分母指标。

4.均值的数学性质

1. 数值观测值与均值的离差之和等于0

$$\sum (x-\bar{x})=0 \qquad \text{if} \qquad \sum (x-\bar{x})f=0$$

2. 数值观测值与均值的离差平方和最小

$$\sum (x-\bar{x})^2 = \min(最小) \quad \text{或} \quad \sum (x-\bar{x})^2 f = \min(最小)$$

3.均值易受极端值的影响

(二)调和平均数

- 调和平均数也称为倒数平均数。
- 各变量值的倒数 $(1/x_i)$ 的算术平均数的倒数.
- _ 其计算公式为:

$$\overline{x}_{H} = \frac{1}{\frac{1}{x_{1}} m_{1} + \frac{1}{x_{2}} m_{2} + \dots + \frac{1}{x_{n}} m_{n}} = \frac{m_{1} + m_{2} + \dots + m_{n}}{\frac{m_{1}}{x_{1}} + \frac{m_{2}}{x_{2}} + \dots + \frac{m_{n}}{x_{n}}} = \frac{\sum_{i=1}^{n} m_{i}}{\sum_{i=1}^{n} m_{i}}$$

$$\frac{m_{1} + m_{2} + \dots + m_{n}}{m_{1} + m_{2} + \dots + m_{n}}$$

(续)

- 社会经济统计中所应用的 调和平均数通常是加权算 术平均数的变形.
 - 已知各组变量值 x_i 和 (x_i, f_i) ,而缺乏 f_i 时,加权 算术平均数通常可变形为调 和平均数形式来计算。
- 【例3-3】解:

1 3			
企业	流通费用 率(%)	商品销售 额(万元)	流通费 用(万 元)
甲	16	1600	256
Z	10	4750	475
丙	12	4000	480
合计	11.7	10350	1211

$\sum_{\overline{\mathbf{v}} = i=1}^k x_i f_i$	$\sum_{i=1}^k (x_i f_i)$	256+475+480	$=\frac{1211}{100750}\times100\%=11.7\%$
$\frac{\lambda - \frac{k}{\sum_{k} f}}{\sum_{k} f}$	$-\frac{1}{\sum_{i}^{k}(x_{i}f_{i})}$	230 4/3 48U	$=\frac{10350}{10350} \times 100\% = 11.7\%$
2024/12/7	$\sum_{i=1}^{\infty} x_i$	$\overline{16\%}^{+}\overline{10\%}^{+}\overline{12\%}$	17

(三) 几何平均数 (Geometric mean)

- 几何平均数一 n个变量值连乘积的n次方根。
 - ■简单几何平均数
 - ■加权几何平均数

$$\overline{x}_G = \sqrt[n]{x_1 \times x_2 \times ... \times x_n} = \sqrt[n]{\prod_{i=1}^n x_i}$$

$$\overline{x}_{G} = (f_{1} + f_{2} + \dots + f_{k}) \sqrt{x_{1}^{f_{1}} \times x_{2}^{f_{2}} \times \dots \times x_{k}^{f_{k}}} = \sum_{i=1}^{n} f_{i} \sqrt{\prod_{i=1}^{n} x_{i}^{f_{i}}}$$

- ■适用于各个变量值之间存在连乘积关系的场合。
 - ■主要用于计算现象的平均发展速度,
 - 也适用于对某些具有环比性质的比率求平均.

【例3-4】

- 某企业产品的加工要顺次经过前后衔接的五道工序。本月该企业各加工工序的合格率分别为88%、85%、90%、92%、96%,试求这五道工序的平均合格率。
- 解:本例中各工序的合格率具有环比的性质,企业产品的总合格率等于各工序合格率之连乘积。所以,所求的平均合格率应为:

$$\bar{x}_G = \sqrt[5]{88\% \times 85\% \times 90\% \times 92\% \times 96\%} = 90.31\%$$

众数(mode)

- 1. 一组数据中出现次数最多的变量值
- 2. 适合于数据量较多且具有明显集中趋势 时使用
- 3. 不受极端值的影响
- 4. 一组数据可能没有众数或有几个众数
- 5. 主要用于分类数据,也可用于顺序数据和数值型数据

不惟一

1. 无众数 原始数据:

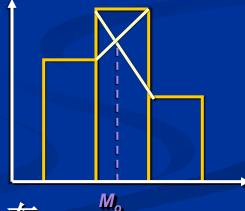
原始数据:

3. 多于一个众数

原始数据:

36 42 42

分组数据的众数


(要点及计算公式)

- 1. 先找到众数组。
- •在等距数列中,众数组就是次数最多的组;
 - •在异距数列中,众数组应是频数密度*最大的组
- 2. 众数的值与相邻两组频数的分布有关
- 3. 相邻两组的频数相等时, 众数组的组中值即为众数
- 4.相邻两组的频数不相等时,众数采用下面的计算公式:

$$M_o = L + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times d$$

$$M_o = U - \frac{\Delta_2}{\Delta_1 + \Delta_2} \times d$$

 $\Delta_1 + \Delta_2$ 5.该公式假定众数组的频数在众数组内均匀分布

分组数据的众数实例

【例】某地区120家企业按利润额进行分组,结果如下:

	A	В
1	按利润额分组 (万元)	企业数(个)
2	1メハリ1円(4火/) 2年 (/)/()/	<u>тетех</u> (г /
3	200~300	19
4	300∼400	30
5	400~500	42
6	500~600	18
7	600以上	11
8	合 计	120

根据频数知: 众数在400~500组

$$M_o = 400 + \frac{42 - 30}{(42 - 30) + (42 - 18)} \times 100 = 433.33(\overrightarrow{J})$$

三、中位数

中位数 (median) 的概念

1. 排序后处于中间位置上的变量值

- 2.不受极端值的影响
- 3.主要用于顺序数据,也可用数值型数据,但不能 用于分类数据

中位数的位置确定

原始数据: 中位数位置 $\frac{n+1}{2}$

组距分组数据: 中位数位置=
$$\frac{n}{2}$$
= $\frac{\sum f}{2}$

未分组数据的中位数 (计算公式)

$$M_e = \begin{cases} X_{(\frac{n+1}{2})} \\ \frac{1}{2} (X_{\frac{n}{2}} + X_{\frac{n}{2}+1}) \end{cases}$$

当n为奇数时

当n为偶数时

未分组数据中位数的求法 (9个数据的算例)

9个家庭的人均月收入数据 例) 原始数据: 750 780 1080 850 960 1500 2000 1250 1630 排 序: 750 780 850 960 1080 1250 1500 1630 2000 2 位 置: 中位数 = 1080

未分组数据中位数的求法 (10个数据的算例)

【例】: 10个家庭的人均月收入数据

排 户: 660 750 780 850 960 1080 1250 1500 1630 位 置: 1 2 3 4 5 6 8 9 10

位置=
$$\frac{n+1}{2}$$
= $\frac{10+1}{2}$ =5.5

中位数=
$$\frac{960+1080}{2}$$
=1020

分组数据的中位数(要点及计算公式)

- 1. 用于数值型分组数据
- 2. 根据位置公式确定中位数所在的组
- 3. 下限与上限计算公式分别为:

$$\begin{split} & \sum f \\ M_e = L + \frac{\sum f}{2} - S_{m-1} \\ f_m & \qquad M_e = U - \frac{\sum f}{2} - S_{m+1} \\ f_m & \qquad M_e = U - \frac{\sum f}{2} - S_{m+1} \\ & \qquad M_e = U -$$

4.该公式假定频数在中位数组内均匀分布

分组数据的中位数

(例题分析)

【例】某地区120家企业按利润额进行分组,结果如下:

	A	В	С	D
1	按利润额分组(万元)	企业数(个)	向上累计频数	向下累计频数
2	X	f	S_{n-1}	S_{m+1}
3	200~300	19	19	120
4	300~400	30	49	101
5	400~500	42	91	71
6	500~600	18	109	29
7	600以上	11	120	11
8	合 计	120		_

$$\frac{\sum f}{2} = \frac{120}{2} = 60$$
 根据向上累计频数知,中位数在 $400^{\circ}500$ 这一组

$$M_e = 400 + \frac{\frac{120}{2} - 49}{42} \times 100 = 426.19(\vec{\pi})$$

四、四分位数

四分位数 (quartile) 概念

1. 排序后处于25%和75%位置上的值

2. 不受极端值的影响

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/195224041132011304