# 关于电荷转移步骤 动力学与电化学极 化

## 5.1 电化学极化概述

液相传质过程发生于"电极/溶液"表面附近的液层中,即扩散层中。

电化学步骤(电荷转移步骤)则发生于"电极/溶液"界面上。

由于电极过程中,电化学步骤的速度缓慢, 而引起电极电位偏离其平衡电极电位的现象,称 为"电化学极化"或"活化极化"。产生的过电 位为"电化学过电位"。

## 5.1.1 电化学极化经验公式---Tafel公式

1905年,根据析氢反应的大量研究结果,Tafel首先提出了电化学极化过电位与极化电流密度之间的关系,即著名的Tafel公式。

$$\eta = a + b \lg I$$

从上式可以看出,η不仅与电流密度I有关,还与a、b有关。而a、b则与电极材料性质、表面结构、电极的真实表面积、溶液的组成及温度有关。

## 5.1.2 影响电化学极化的主要因素

- (1) 电流密度。
- (2) 电极材料,不同的电极材料a值不同,反应能力完全不同。需要寻找具有高催化活性的材料。
- (3) 电极的真实表面积,表面积越大电极的反应能力越大,可减小电极的极化。如采用多孔电极。
- (4) 电极的表面状态,电化学极化非常强烈地依赖于电极表面的状态。各种活性物质的特性吸附可极大地改变电极反应的速度,如电镀添加剂、缓蚀剂等。
  - (5)温度,一般温度升高,过电位降低,反应速度加快。

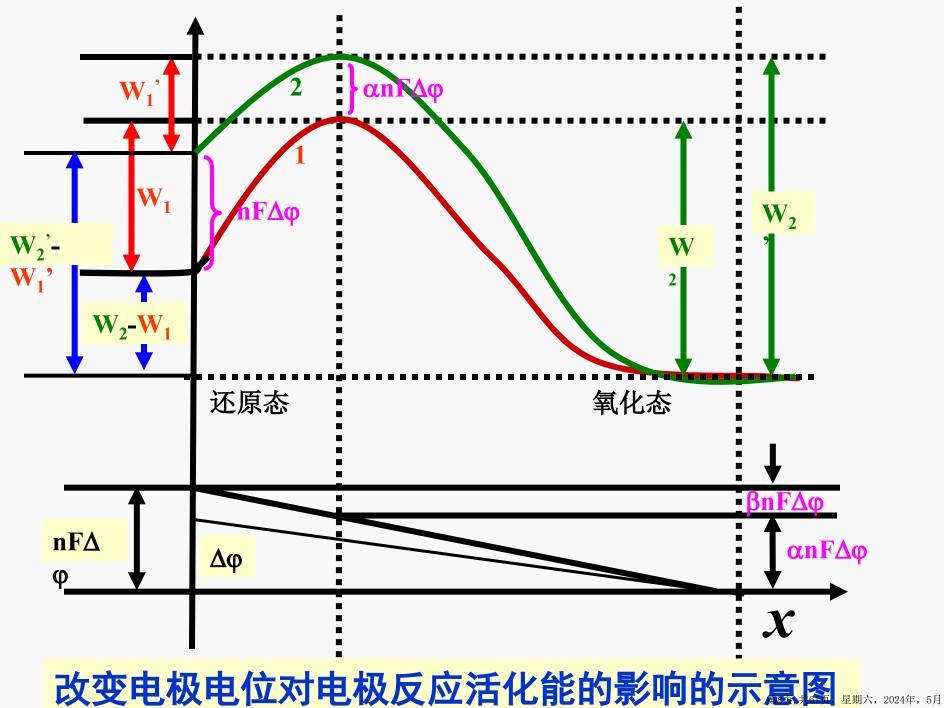
## 5.2.1 电极电位对反应活化能的影响

电极电位对于电极反应速度的影响有两种方式: 热力学方式与动力学方式。

(1) 热力学方式: 当电荷迁移步骤为快步骤时, 在电极反应过程中其平衡状态基本未被破坏。此 时电极电位的变化将改变反应离子表面的浓度 (根据能斯特方程),从而间接地影响到电极反 应速率。 (2) 动力学方式: 当电荷迁移步骤为慢步骤时, 电极电位的变化直接改变界面电子得失步骤的活化 能,从而改变电极反应速度。

## 对于电极反应: $O + ne^-$

- ■某一电极电位下,其阳极反应(氧化方向进行)的活化能为 $W_1$ ,阴极反应(还原方向进行)的活化能为 $W_2$ 。
- ■假设为还原电流,则该电位下每发生1 mol的物质变化,总伴随有nF的正电荷由溶液转移到电极上。
- ■当电极电位增加 $\Delta \phi$ 时,则反应产物(终态)的总势能必然也增大 $nF\Delta \phi$ 。



$$W_2' - W_1' = W_2 - W_1 + nF\Delta \varphi$$

再变化为: 
$$(W_2' - W_2) - (W_1' - W_1) = nF\Delta φ$$

当电极电位改变 $\Delta \phi$ 时,

 $W_1' = W_1 - \beta n F \Delta \phi$ ,式中β为阳极反应传递系数;

 $W_2' = W_2 + \alpha n F \Delta \phi$ , 式中 $\alpha$  为阴极反应传递系数;

因为, $(W_2'-W_2)-(W_1'-W_1)=(\alpha+\beta)nF\Delta \phi$ 

所以,  $\alpha + \beta = 1$ 

### $W_1' = W_1 - \beta n F \Delta \varphi$ , $W_2' = W_2 + \alpha n F \Delta \varphi$

Δφ>0时: 阳极反应的活化能降低, 阴极反应的活化能升高; 相应地阳极反应速度增加, 阴极反应速度减小。

相反, Δφ<0时: 阳极反应的活化能升高, 阴极反应的活化能降低; 相应地阳极反应速度减小, 阴极反应速度增加。

注意:传递系数α、β分别描述了电极电位的 变化对阴极反应和阳极反应活化能的影响程 度。这种方法,只是一种经验的方法,其物 理意义并不清楚。

## 5.2.2 电极电位对反应速度的影响

对于电极反应:  $O + ne^- \iff R$ 

设所选择的电位零点处( $\phi^0=0$ ),阳极反应活化能为 $W_1^0$ ,阴极反应活化能为 $W_2^0$ ,

根据化学动力学理论,假设反应为基元反应,此时,反应速率v为

$$v = kc$$

根据阿累尼乌斯公式:  $k = A \exp(-\frac{E_a}{RT})$ 

于是有: 
$$k_a^0 = z_a \exp(-\frac{W_1^0}{RT})$$
  $k_c^0 = z_c \exp(-\frac{W_2^0}{RT})$ 

带入前面公式有:

$$v_a^0 = k_a^0 c_R = z_a c_R \exp(-\frac{W_1^0}{RT})$$

$$v_c^0 = k_c^0 c_o = z_c c_o \exp(-\frac{W_2^0}{RT})$$

将电极反应速度用电流密度表示: I = nFv则有:

$$i_a^0 = nFk_a^0 c_R = nFz_a c_R \exp(-\frac{W_1^0}{RT})$$

$$i_c^0 = nFk_c^0 c_o = nFz_a c_o \exp(-\frac{W_2^0}{RT})$$

式中 $i_a^0$ 、 $i_c^0$ 分别为电极电位零点时(即 $\phi = \phi^0 = 0$ ),相应于单向绝对反应速率的电流密度,总是具有正值!

当电极电位变为 $\varphi$ 时(即 $\Delta \varphi = \varphi - \varphi^0 = \varphi$ ),则根据电极电位对活化能的影响,活化能变为:

$$\mathbf{W}_1 = \mathbf{W}_1^0 - \beta \mathbf{n} \mathbf{F} \mathbf{\phi}$$
$$\mathbf{W}_2 = \mathbf{W}_2^0 + \alpha \mathbf{n} \mathbf{F} \mathbf{\phi}$$

因此,当电极电位变为φ时,阴、阳极反应电流密度变为i<sub>c</sub>和i<sub>a</sub>

$$i_{a} = nFz_{a}c_{R} \exp(-\frac{W_{1}^{0} - \beta nF\varphi}{RT})$$

$$= nFk_{a}^{0}c_{R} \exp(\frac{\beta nF\varphi}{RT}) = i_{a}^{0} \exp(\frac{\beta nF\varphi}{RT})$$

#### 同理,

$$i_c = nFz_c c_o \exp(-\frac{W_1^0 + \alpha nF\varphi}{RT})$$

$$= nFk_c^0 c_o \exp(-\frac{\alpha nF\varphi}{RT}) = i_c^0 \exp(-\frac{\alpha nF\varphi}{RT})$$

#### 改为对数表示形式为:

$$\varphi = -\frac{2.3RT}{\beta nF} \lg i_a^0 + \frac{2.3RT}{\beta nF} \lg i_a$$

$$\varphi = \frac{2.3RT}{\alpha nF} \lg i_c^0 - \frac{2.3RT}{\alpha nF} \lg i_c$$

上述四个方程就是电化学反应为速控步骤的基本动力学方程!

请注意式中各参数的物理意义。

# 5.3.1 φ<sub>平</sub>和"交换电流密度"i<sup>0</sup>

选取电极体系的平衡电极电位 $\phi_P$ 为电位零点( $\phi^0$ ),即 $\phi^0=\phi_P=0$ ,所以,  $\phi=\phi-\phi_P$ 

在 $\phi_{\text{P}}$ 时,电极体系处于平衡状态,即阳极反应速率( $i_a^0$ )与阴极反应速率( $i_c^0$ )相等,于是定义了一个统一的符号 $i^0$ 来表示,即  $i_a^0=i_c^0=i^0$ 



对于阳极反应  $\varphi = \varphi - \varphi_{\Psi} = \eta_a$ 

所以有: 
$$\eta_a = -\frac{2.3RT}{\beta nF} \lg i^0 + \frac{2.3RT}{\beta nF} \lg i_a = \frac{2.3RT}{\beta nF} \lg \frac{i_a}{i^0}$$

对于阴极反应  $\varphi = \varphi - \varphi_{\Psi} = -\eta_c$ 

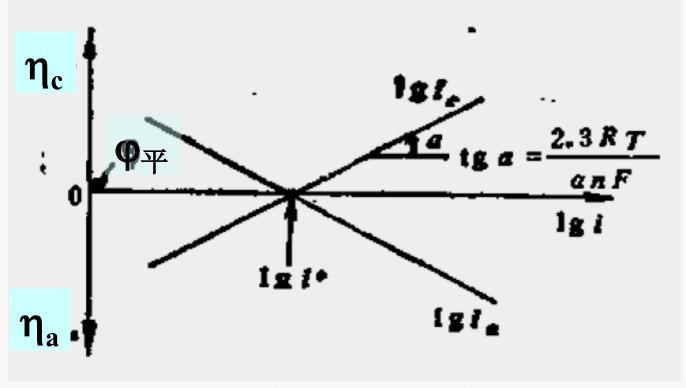
所以有: 
$$\eta_c = -\frac{2.3RT}{\alpha nF} \lg i^0 + \frac{2.3RT}{\alpha nF} \lg i_c = \frac{2.3RT}{\alpha nF} \lg \frac{i_c}{i^0}$$

### 若改写成指数形式,则有:

$$i_a = i^0 \exp(\frac{\beta nF}{RT} \eta_a)$$

$$i_c = i^0 \exp(\frac{\alpha nF}{RT} \eta_c)$$

知道了 $\alpha$ 、 $\beta$ 和 $i^0$ ,根据上面的电化学步骤的基本动力学方程,就可以计算任一电位下的绝对电流密度 $i_a$ 、 $i_c$ 。



过电位ia 和 ic的影响

#### 电化学平衡

当电极体系处在平衡态时,电极上没有净反应发生,阳极反应速率( $i_a^0$ )与阴极反应速率( $i_c^0$ )相等。

$$z_a c_R \exp(-\frac{W_1^0 - \beta nF \varphi_{\text{pp}}}{RT}) = z_c c_o \exp(-\frac{W_2^0 + \alpha nF \varphi_{\text{pp}}}{RT})$$

#### 写成对数形式并整理后得:

$$\varphi_{Y} = \left(\frac{W_1^0 - W_2^0}{nF} + \frac{2.3RT}{nF} \lg \frac{z_c}{z_a}\right) + \frac{2.3RT}{nF} \lg \frac{c_o}{c_R}$$

$$= \varphi_{Y}^{0'} + \frac{2.3RT}{nF} \lg \frac{c_o}{c_R}$$

式中: 
$$\varphi_{\mp}^{0'} = \frac{W_1^0 - W_2^0}{nF} + \frac{2.3RT}{nF} \lg \frac{z_c}{z_a}$$

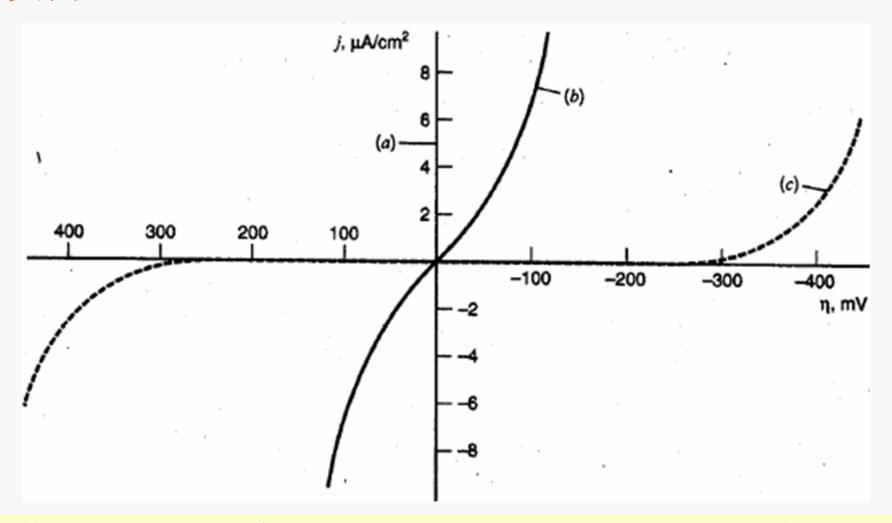
#### 注意: i<sup>0</sup>的物理意义

(1) i<sup>0</sup>与反应体系中各种离子的平衡浓度有关。 若改变了某一种反应离子的浓度, φ<sub>平</sub>和i<sup>0</sup>数值都 会随之发生变化。所以,在用i<sup>0</sup>描述动力学性质时, 必须同时给出平衡条件,即各离子的平衡浓度。

# (2) i<sup>0</sup>的值反映了电极反应的可逆程度与极化性能。

|          | <i>i</i> <sup>0</sup> =0 | i 0小 | <i>i</i> <sup>0</sup> 大 | $i^0 \rightarrow \infty$ |
|----------|--------------------------|------|-------------------------|--------------------------|
| 极化 性能    | 理想极化                     | 易极化  | 难极化                     | 理想不极化                    |
| 可逆<br>程度 | 完全<br>不可逆                | 小    | 大                       | 完全可逆                     |

#### 实例:



交换电流密度( $i^0$ )对急需区分阴、阳极净电流密度的活化过电位的影响。(a) $i^0=10^{-3}$  A/cm²;(b) $i^0=10^{-6}$  A/cm²;(c) $i^0=10^{-9}$  A/cm²。阴极反应 $\alpha=0.5$ ,T=298 K。

## 5.3.2 电极反应的标准反应速度常数K

## 当电极反应处于标准平衡状态时,即 $\phi = \phi_{\text{PP}}$

$$i_a = nFk_a^0 c_R \exp(\frac{\beta nF}{RT} \varphi_{\Psi}^0) = nFK_a c_R$$

$$i_c = nFk_c^0c_o \exp(-\frac{\alpha nF}{RT}\varphi_{\Psi}^0) = nFK_cc_o$$

上两式中:

$$K_a = k_a^0 \exp(\frac{\beta nF}{RT} \varphi_{\Psi}^0)$$

$$K_c = k_c^0 \exp(-\frac{\alpha nF}{RT} \varphi_{\Psi}^0)$$

## 5.3.2 电极反应的标准反应速度常数K

此时, $i_a=i_c$ ,若忽略活度系数的影响,则有 $c_R=c_0$ 。

所以:  $K_a = K_c = K$ 

标准反应速 率常数

K称为"标准反应速率常数"。它表示,当电极电位为反应体系的标准平衡电位和反应粒子为单位浓度时,电极反应进行的速度。K的单位是 cm/s。

#### 注意:

(1) 虽然在推导K时采用了 $\varphi = \varphi_{\mathbb{P}^0}$  及 $c_R = c_o$ 的标准反应体系,但由于K是一个有确切物理意义的常数,因而对于非标准体系同样适用,只是应将电化学步骤的基本动力学方程写成一般的形式:

$$i_a = nFKc_R \exp\left[\frac{\beta nF}{RT}(\varphi - \varphi_{\Psi}^0)\right]$$

$$i_c = nFKc_o \exp\left[-\frac{\alpha nF}{RT}(\varphi - \varphi_{\Psi}^0)\right]$$

显然,  $\varphi = \varphi_{\mp}^0$ ,  $c_R = c_0 = 1$ 时,  $i_a = i_c = nFK$ 

(2) 在推导中采用的电位标是任意的,换用不同的电位标后,虽 $\phi$  和 $\phi_{P}$  的值会改变,但当 $\phi = \phi_{P}$  时所表现的客观情况总是不变的,因此K的值不会改变。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: <a href="https://d.book118.com/208112011114007002">https://d.book118.com/208112011114007002</a>