
chapter

seven
The Particle Swarm

This chapter introduces the particle swarm

in its binary and real-numbered forms. The

book so far has been preparing a context, de-

scribing related paradigms in computer sci-

ence and social science, discussing culture

and norms and language and other scien-

ti�c and philosophical developments that, if

we have been successful, will make the parti-

cle swarm seem like an obvious thing to

propose.

The Adaptive Culture Model in the previ-

ous chapter hints at what can happen as a re-

sult of the simplest imaginable interactions

of the simplest imaginable agents—if these

can even be called “agents.” Given a large

space of possibilities, the population is often

able to �nd multivariate solutions, patterns

that solve problems, through a stripped-

down form of social interaction.

It is worth emphasizing that individuals in

the culture model are not trying to solve

problems. They are only following the simple

rules of the algorithm, which say nothing

about the existence of a problem or how to

solve it. Yet through reciprocal social in�u-

ence each individual betters its “�tness” (the

term is less appropriate here than in discus-

sion of evolutionary algorithms), and the per-

formance of the population improves. We

would not say that the adaptive culture algo-

rithm is an especially powerful way to solve

problems, but it is a good introduction to

some social algorithms that are.

The particle swarm algorithm is intro-

duced here in terms of social and cogni-

tive behavior, though it is widely used as a

problem-solving method in engineering and

computer science. We have discussed binary

encoding of problems, and the �rst version

of the particle swarm we present here is de-

signed to work in a binary search space. Later

in the chapter we introduce the more com-

monly used version, which operates in a

space of real numbers. I
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Sociocognitive Underpinnings: Evaluate, Compare,
and Imitate

A very simple sociocognitive theory underlies the Adaptive Culture Model

and particle swarms. We theorize that the process of cultural adaptation

comprises a high-level component, seen in the formation of patterns

across individuals and the ability to solve problems, and a low-level com-

ponent, the actual and probably universal behaviors of individuals,

which can be summarized in terms of three principles (Kennedy, 1998):

I Evaluate

I Compare

I Imitate

Evaluate

The tendency to evaluate stimuli—to rate them as positive or negative,

attractive or repulsive—is perhaps the most ubiquitous behavioral char-

acteristic of living organisms. Even the bacterium becomes agitated, run-

ning and tumbling, when the environment is noxious. Learning cannot

occur unless the organism can evaluate, can distinguish features of

the environment that attract and features that repel, can tell good from

bad. From this point of view, learning could even be de�ned as a change

that enables the organism to improve the average evaluation of its

environment.

Compare

Festinger’s social comparison theory (1954) described some of the ways

that people use others as a standard for measuring themselves, and how

the comparisons to others may serve as a kind of motivation to learn and

change. Festinger’s theory in its original form was not stated in a way

that was easily tested or falsi�ed, and a few of the predictions generated

by the theory have not been con�rmed, but in general it has served as a

backbone for subsequent social-psychological theories. In almost every-

thing we think and do, we judge ourselves through comparison with

others, whether in evaluating our looks, wealth, humor, intelligence

(note that IQ scales are normed to a population average; in other words,
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your score tells you how you compare to others—which is really the

point, isn’t it?), or other aspects of opinion and ability. Individuals in the

Adaptive Culture Model—and in particle swarms—compare themselves

with their neighbors on the critical measure and imitate only those

neighbors who are superior to themselves. The standards for social be-

haviors are set by comparison to others.

Imitate

You would think that imitation would be everywhere in nature; it is such

an effective way to learn to do things. Yet, as Lorenz has pointed out,

very few animals are capable of real imitation; in fact, he asserts that only

humans and some birds are capable of it. Some slight variations of social

learning are found among other species, but none compare to our ability

to mimic one another. While “monkey see, monkey do,” well describes

the imitative behavior of our cousins, human imitation comprises taking

the perspective of the other person, not only imitating a behavior but re-

alizing its purpose, executing the behavior when it is appropriate. In The

Cultural Origins of Human Cognition,Michael Tomasello argues that social

learning of several kinds occurs in chimpanzees, but true imitation learn-

ing, if it occurs at all, is rare. For instance, an individual’s use of an object

as a tool may call another individual’s attention to the object; this sec-

ond individual may use the same object, but in a different way. True imi-

tation is central to human sociality, and it is central to the acquisition

and maintenance of mental abilities.

The three principles of evaluating, comparing, and imitating may be

combined, even in simpli�ed social beings in computer programs, en-

abling them to adapt to complex environmental challenges, solving ex-

tremely hard problems. Our view diverges from the cognitive viewpoint

in that nothing besides evaluation, comparison, and imitation takes

place within the individual; mind is not found in covert, private cham-

bers hidden away inside the individual, but exists out in the open; it is a

public phenomenon.

A Model of Binary Decision

Consider a bare-bones individual, a simple being with only one thing on

its mind, one set of decisions to make, yes/no or true/false, binary deci-

sions, but very subtle decisions, where it is hard to decide which choices
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to make. For each decision, this supersimpli�ed individual can be in one

state or the other, either in the yes state, which we will represent with a 1,

or the no= 0 state. It is surrounded by other yes/no individuals, who are

also trying to decide. Should I say yes? Should I say no? They all want to

make the best choices.

Two important kinds of information are available to these primitive

beings. The �rst is their own experience; that is, they have tried the

choices and know which state has been better so far, and they know how

good it was. But these social beings have a second consideration; they

have knowledge of how the other individuals around them have per-

formed. In fact they are so simple that all they know is which choices

their neighbors have found most positive so far and how positive the

best pattern of choices was. If these stripped-down beings are anything

like people, they know how their neighbors have done by observing

them and by talking with them about their experiences.

These two types of information correspond to Boyd and Richerson’s

individual learning and cultural transmission. The probability that the

individual will choose “yes” for any of the decisions is a function of how

successful the “yes” choice has been for them in the past relative to “no.”

The decision is also affected by social in�uence, though the exact rule in

humans is admittedly not so clear. Social impact theory states that the

individual’s binary decisions will tend to agree with the opinion held by

the majority of others, weighted by strength and proximity. But even

that rule is somewhat vague, given ambiguities in the concepts of

strength and proximity.

For the present introductory model we will just say that individuals

tend to be in�uenced by the best success of anyone they are connected

to, the member of their sociometric neighborhood that has had the most

success so far. While we admit this is an oversimpli�cation, it has a kernel

of truth that justi�es the parsimony it brings to the model.

Individuals can be connected to one another according to a great

number of schemes, some of which will be mentioned in Chapter 8. Most

particle swarm implementations use one of two simple sociometric prin-

ciples (see Figure 7.1). The �rst, called gbest, conceptually connects all

members of the population to one another. The effect of this is that each

particle is in�uenced by the very best performance of any member of the

entire population. The second, called lbest (g and l stand for “global” and

“local”), creates a neighborhood for each individual comprising itself

and its k nearest neighbors in the population. For instance, if k= 2, then

each individual i will be in�uenced by the best performance among a

group made up of particles i− 1, i, and i+ 1. Different neighborhood to-

pologies may result in somewhat different kinds of effects. Unless stated
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1 32

1 3 62

0.72 0.33 0.54

The “lbest” neighborhood with 2. Each individual's neighborhood
contains itself and its two adjacent neighbors. The first and last are connected.

k =

Individual #3 has found the best position so far in #4's neighborhood. Therefore,
#4's velocity will be adjusted toward #3's previous best position and #4's own
previous best position.

The “gbest” neighborhood. Assuming that #3 has found the best fitness
so far in the entire population, all others' velocities will be attracted toward
its previous best position.

4 5 6 7 8

4 5 7 8

Best
fitness
so far

Figure 7.1 The two most common types of neighborhoods.
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otherwise, the following discussions will presume lbest neighborhoods

with k = 2 (sometimes described as “neighborhood = 3”).

In a sociocognitive instance the individual must arrange an array of

decisions or judgments in such a way that they all �t together, what we

call “making sense” or “understanding” things. The individual must be

able to evaluate, compare, and imitate a number of binary choices

simultaneously.

Evaluation of binary strings can be accomplished in one step. In the

psychological case, that is, if we are talking about humans, we can again

use the concept of cognitive dissonance to evoke the sense of tension

that exists when an array of decisions contains inconsistencies. We expe-

rience the state as discomfort and are motivated to change something to

reduce the tension, to improve the evaluation. Dissonance as described

by Festinger provides a single measure of cognitive evaluation, exactly as

“�tness” is a single measure of genetic or phenotypic goodness.

How do we improve cognitive �tness? Of course there are plenty of

theories about this. In Ajzen and Fishbein’s Reasoned Action Model, (1980)

intent is seen as a function of two kinds of things that should be getting

familiar by now (see Figure 7.2). On the one hand, intent is affected by

the person’s attitude toward the behavior; for instance, if they believe vi-

olence is harmful or immoral, then they may intend not to act violently.

This attitude is formed, in Ajzen (pronounced “eye-zen”) and Fishbein’s

theory, by a linear combination of beliefs that the behavior will result

in some outcomes (bi) times the individual’s evaluation of those out-

comes (ei):

A b eo i i

i

n

=
=

∑
1

This kind of expectancy-value model of attitude has existed in some

form for many years, and we will not criticize its linearity or asymptotic

issues here (never mind the decades-old debate about summing versus

averaging). We are interested in the fact that intent has a second cause,

which Ajzen and Fishbein call the subjective norm. The subjective norm

regarding a behavior is also built up, in their theory, as a linear sum of

products, but this time the factors entering into the formula are social.

The individual’s subjective norm toward a behavior is a sum of the prod-

ucts of their beliefs that certain others think they should or should not

perform the behavior, multiplied by the motivation to comply with each

of those others:

SN b mo i i

i

n

=
=

∑
1
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To point out the obvious, these two components of the theory of rea-

soned action map easily onto the components of Boyd and Richerson’s

cultural transmission model; that is, there is an individual term (individ-

ual learning or attitude toward a behavior) and a social term (cultural

transmission or subjective norm). These two kinds of concepts are found

in other theories as well and are represented in our decision model as the

two terms that make up the change formula. We theorize that the coexis-

tence of these two modes of knowledge, that is, knowledge acquired by

the senses through experience in the world and knowledge acquired

from others, gives humans the intellectual advantage; it is the source of

our intelligence.

Besides their past experience and inputs from the social environ-

ment, another factor that affects the individual’s decision is their cur-

rent propensity or position regarding the issue. They may start with a

strongly negative attitude and have subsequent positive experiences re-

garding the choice or attitude object—but still have a negative feeling

about it. The positive experiences may make the individual more likely to

choose the positive alternative, but in order to shift the individual’s gen-

eral propensity into the positive domain, the decision threshold would

still have to shift upwards. If the individual’s initial position is extreme,

the probability is lower of its changing—for one thing, the individual is

less likely to try the other alternative.

In mathematical terms, we are proposing a model wherein the proba-

bility of an individual’s deciding yes or no, true or false, or making some
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Figure 7.2 According to the Reasoned Action Model, behavior is a function of intention and

only remotely of the individual’s attitude about the behavior.
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other binary decision, is a function of personal and social factors (Ken-

nedy and Eberhart, 1997):

P x t f x t v t p p
id id id id gd

( ( ) ) ( ( ), ( ), , )= = − −1 1 1

where

I P(xid(t)=1) is the probability that individual i will choose 1 (of

course the probability of their making the zero choice is 1− P) for

the bit at the dth site on the bitstring

I xid(t) is the current state of the bitstring site d of individual i

I t means the current time step, and t − 1 is the previous step

I vid(t − 1)is a measure of the individual’s predisposition or current

probability of deciding 1

I pid is the best state found so far, for example, it is 1 if the individ-

ual’s best success occurred when xid was 1 and 0 if it was 0

I pgd is the neighborhood best, again 1 if the best success attained by

any member of the neighborhood was when it was in the 1 state

and 0 otherwise

The decisions themselves will be stochastic, if for no better theoretical

reason than that we never know all the forces involved—it is very un-

likely that any decision is made based solely on isolated facts pertaining

directly to that decision alone. A lot of randomness allows exploration of

new possibilities, and a little bit allows exploitation by testing patterns

similar to the best one found so far; thus we can balance between those

two modes of search by adjusting the uncertainty of decisions.

The parameter v t
id

( ),an individual’s predisposition to make one or the

other choice, will determine a probability threshold. If v t
id

( ) is higher, the

individual is more likely to choose 1, and lower values favor the 0 choice.

Such a threshold needs to stay in the range [0.0, 1.0]. We have already

seen one straightforward function for accomplishing this, when we

talked about neural networks. The sigmoid function

s v
v

id

id

( )
exp( )

=
+ −

1

1

squashes its input into the requisite range and has properties that make it

agreeable to being used as a probability threshold (though there is noth-

ing magical about this particular function).
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We wish to adjust the individual’s disposition toward the successes of

the individual and the community. To do that we construct a formula for

each vid in the current time step that will be some function of the differ-

ence between the individual’s current state or position and the best

points found so far by itself and by its neighbors. We want to favor the

best position, but not so much that the individual ceases searching pre-

maturely. If we simply added ( pid− xid(t−1)) and ( pgd− xid(t−1)) to vid (t),

it would move upward when the difference between the individual’s pre-

vious best and most recent states, or the difference between the neigh-

borhood’s best and the individual’s most recent states, equaled 1, and

would be attracted downward if either difference equaled−1. The proba-

bility threshold moves upward when the bests are ones and downward

when they are zeroes.

In any situation we do not know whether the individual-learning or

the social-in�uence terms should be stronger; if we weight them both

with random numbers, then sometimes the effect of one, and sometimes

the other, will be stronger. We use the symbol ϕ (the Greek letter phi) to

represent a positive random number drawn from a uniform distribution

with a prede�ned upper limit. In the binary version the limit is some-

what arbitrary, and it is often set so that the two ϕ limits sum to 4.0. Thus

the formula for binary decision is

v t v t p x t p x tid id id id gd id( ) ( ) ( ( )) ( ( ))= − + − − + − −1 1 11 2ϕ ϕ

if then elseρ id id id ids v t x t x t< = =( ( )) ( ) ; ( )1 0

where ρid is a vector of random numbers, drawn from a uniform distribu-

tion between 0.0 and 1.0. These formulas are iterated repeatedly over

each dimension of each individual, testing every time to see if the cur-

rent value of xid results in a better evaluation than pid, which will be up-

dated if it does. Boyd and Richerson varied the relative weighting of indi-

vidual experience and social transmission according to some theoretical

suggestions; the current model acknowledges the differential effects of

the two forces without preconceptions about their relative importance.

Sometimes decisions are based more on an individual’s personal experi-

ence and sometimes on their perception of what other people believe,

and either kind of information will dominate sometimes.

One more thing: we can limit vid so that s(vid) does not approach too

closely to 0.0 or 1.0; this ensures that there is always some chance of a bit

�ipping (we also don’t want vi moving toward in�nity and overloading

the exponential function!). A constant parameter Vmax can be set at the
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start of a trial to limit the range of vid. In practice, Vmax is often set at

±4.0, so that there is always at least a chance of s(Vmax) ≈ 0.0180 that a

bit will change state. In this binary model, Vmax functions similarly to

mutation rate in genetic algorithms.

Individuals make their decision in a population, where they are in�u-

enced by the successes of their neighbors. As each individual’s decision is

affected by (pgd− xid(t− 1)), that is, (usually) some other individual’s suc-

cess, they in�uence one another and tend tomove toward a common po-

sition. As an individual begins to approximate its neighbor’s best posi-

tion, it may perform better and in�uence its neighbors, and on and on;

good decisions spread through the population. We are comfortable call-

ing this the formation of a culture in a computational population.

In this section we have developed an extremely parsimonious model

of binary choice as a function of individual learning and social in�uence.

Individuals tend to gravitate probabilistically toward the decisions that

have resulted in successes for themselves and their colleagues. The result

is optimization of each individual’s decision vector and convergence of

the population on an optimal pattern of choices.

The entire algorithm,maximizing goodness, is shown in pseudocode:

Loop

For i = 1 to number of individuals

ifG x G p
i i

( ) ( )
r r

> then do //G() evaluates goodness

For d = 1 to dimensions

pid = xid //pid is best so far

Next d

End do

g = i //arbitrary

For j = indexes of neighbors

IfG p G p
j g

( ) ( )
r r

> then g = j //g is index of best performer

in the neighborhood

Next j

For d = 1 to number of dimensions

v t v t p x t p x t
i id id id gd id
( ) ( ) ( ( )) ( ( ))= − + − − + − −1 1 11 2ϕ ϕ

v V V
id
∈ − +( , )max max

if ρ
id id id id

s v t x t x t< = =( ( )) ( ) ; ( ) ;then else1 0

Next d

Next i

Until criterion
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Testing the Binary Algorithm with the De Jong Test Suite

It may seem confusing to jump back and forth between “cognitive mod-

els” and “test functions.” We are maintaining a generous de�nition of

cognitive models, given the lack of consensus among psychologists

about the internal structure of the mechanisms of thought. Thus, to us, a

cognitive model is just like any other multidimensional problem where

elements interact with one another in a combination possessing some

measurable goodness.

Kennedy and Eberhart (1997) tested the binary particle swarm using a

binary-coded version of the classic De Jong suite of test problems. The bi-

nary versions had already been prepared for experimentation with bi-

nary genetic algorithms, so importing them into a binary particle swarm

program was straightforward. A population size of 20 was used for all

tests. In all cases the global optimum was at (0.0)n. The algebraic forms of

the functions are given in Table 7.1.

The binary particle swarm converged quickly on f1, also known as

the sphere function, encoded as a 30-dimensional bitstring. The best
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Table 7.1 Functions used by De Jong to test various aspects of optimization algorithms.

Function Dimension

f x x x
i i i

i

n

1 512 512
2

1

( ) ; . .= − ≤ ≤
=

∑
30

f x x x x x
i i

2 100 1 2048 20481

2

2

2

1

2
( ) ( ) ( ) ; . .= − + − − ≤ ≤ 24

f x x x
i

i

n

i i
3 512 512

1

( ) int( ); . .= − ≤ ≤
=

∑
50

f x ix Gauss x
i

i

n

i i
4 01 128 128

1

4
( ) ( , ); . .= + − ≤ ≤

=

∑
240

f x

j x a

x
i

i

i

ij

i

j

5 0002
1

65536 65536

1

2
6

( ) .

( )

; . . ;= +

+ −

− ≤ ≤

=

∑=

∑
1

25

[aij] =
− − − − −

− − − − − −

32 16 0 16 32 32 16 0 16 32 32

32 32 32 32 32 16

...etc.

− − − −

�

�
�

�

�
�

16 16 16 16 16 ...etc.
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solution the particle swarm found was 0.000002 away from the “perfect”

result of 0.0, which it found on 10 of the 20 trials. It is presumed that the

difference between the found optimum and the target is due to impreci-

sion in the binary encoding rather than a failure of the algorithm to hit

the target.

On the second function, De Jong’s f 2, in 24 dimensions, the particle

swarmwas able to attain a best value of 0.000068, compared to a target of

0.0; again, the difference is thought to derive from the precision of the

encoding rather than the algorithm. This function was encoded in a 24-

dimension bitstring. f2 was the hardest of the De Jong functions for the

particle swarm; the system converged on the best-known optimum 4

times in this set of 20. The hardness of the function might be explained

by the existence of very good local optima in regions that are distant in

Hamming space from the best-known optimum. For instance, the local

optimum

010111111101111000000111

returns a value of 0.000312, while the bitstring

110111101001110111011111

returns 0.000557, and

111000011001011001000001

returns 0.005439. The best-known optimum, returning 0.000068, was

found at

110111101110110111101001.

Thus bitstrings that are very different from one another, in terms of

Hamming distance, are all relatively good problem solutions. A search al-

gorithm that relies on hill climbing is unlikely to make the leap from a

locally optimal region to the global optimum. The function itself has

only one optimum and is hard because of the wide �at regions where

movement, whether it is toward or away from the optimum, likely re-

sults in no real change in �tness.

The third function, f3, is an integer function encoded in 50 dimen-

sions whose target value was attained easily on every trial. De Jong’s f4

function introduces Gaussian noise to the function, and performance
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was measured as an average over the entire population rather than a

population best. Finally, on f5 the algorithm was able to attain a best

value of 0.943665 on 20 out of 20 attempts, in 34 dimensions; we pre-

sume that to be the global optimum. The system converged rapidly on

this �tness peak every time.

The �ve functions were implemented in a single program, where the

only code changed from one test to another was the evaluation function.

All other aspects of the program, including parameter values, ran identi-

cally on the various functions. Thus it appeared from this preliminary re-

search that the binary particle swarm was �exible and robust.

No Free Lunch

There is some controversy in the �eld regarding the evaluation of an al-

gorithm, and maybe our claims that particle swarm optimization is

“powerful” or “effective” should be disregarded. Imagine two optimiza-

tion algorithms, one that searches by following the gradient, that is, a

hill-climbing algorithm, and another that searches by hopping ran-

domly around the landscape. Now imagine two problems, one, like the

sphere function, where the gradient leads inevitably to the optimum

and another that has many optimal regions, some better and some

worse, a landscape peppered with hills and mountain ranges.

Of course the descriptions have been contrived so that it will be obvi-

ous that each algorithm will perform better on one of the problems. It

would be foolish to search this way and that when there is a clear-cut

yellow brick road leading directly to Oz, and it is equally foolish to climb

the nearest hill in a rugged landscape. In this particular case it is clear

that the performance of the algorithm depends on the kind of problem.

In important and controversial papers in 1996 and 1997, David

Wolpert and William Macready formalized and generalized this observa-

tion, and their analysis has some surprising implications. Not only are

some algorithms relatively more or less appropriate for certain kinds of

problems—but averaged over all possible problems or cost functions, the

performance of all search algorithms is exactly the same. This includes

such things as random search; no algorithm is better, on average, than

blind guessing. Provocatively, Wolpert and Macready question whether

natural selection is an effective biological search strategy and suggest

that breed-the-worst might work as well as breed-the-best, except that no

one has ever conducted the experiment on the massively parallel scale of

natural evolution.

A Model of Binary Decision 299

Team LRN



The No Free Lunch (NFL) theorem, as Wolpert and Macready (1997)

called it, has generated considerable discussion among researchers.

Where previously there had been hope that some search strategy could

be found—and evolutionary computation researchers thought they had

it—that would be a best �rst-guess approach to any class of problems,

research hasmore recently focused on �nding exactly what the strengths

and limitations of various search strategies are.

Some observers take NFL tomean that no optimization algorithm can

be any better than any other. Of course—that’s exactly what the theorem

says, isn’t it? Actually, the theorem says that no algorithm can be better

than any other averaged over all cost functions. This is a hugely important

condition.

What does it mean to average over all possible cost functions? Think

of it this way. We have an optimization problem: exiting a room in the

dark. Our special algorithm follows these steps (see Figure 7.3(a)):

I Move in a straight line until you reach a wall.

I Move along the wall until you feel an opening.

I Go through the opening.

There could easily be other algorithms, such as stumble-around-

waving-your-arms-in-the-air, ever-widening circles, and so on, and some

may help us exit better, some worse, than our own proprietary

algorithm.
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Figure 7.3 Two different algorithms, equally good at different things: the stop-in-corners

algorithm is good for �nding the way out of a room (a), and the �nd-corners

algorithm is good at getting stuck in the corner of a room (b).
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Now imagine that a nefarious NFL advocate has an algorithm called

stop-in-corners, which he claims is just as good as our feel-for-opening

algorithm. His algorithm goes like this (see Figure 7.3(b)):

I Move in a straight line until you reach a wall.

I Move along the wall until you feel a corner.

I Stop there.

But (you argue) you don’t see how he will ever be able to exit a room

in the dark, behaving like that! His response is, of course I won’t leave the

room very well, but there are four corners to the room and only one door,

so I will on average be four times as successful at getting stuck in a corner

as you will be at exiting. But (you insist) you don’t want to get stuck in a

corner, you want to exit the room—and your method is better than his

for that. He admits that, but adds, my algorithm is as good as yours—av-

eraged over all problems.

The NFL theorem says that, in order to evaluate an algorithm, you

have to average it over all cost functions—and there can be very many of

those. Some might be

I Exit the room (which is your problem)

I Get stuck in a corner (his problem)

I Find the center

I Find a point halfway between the center and the edge

I Find a point a third of the way between the center and the edge (et

cetera, ad in�nitum)

I Avoid walls altogether

and so on (another condition is that the search space must be �nite, so

we don’t need to worry about problems from outside our domain). And

averaged over all of those, his algorithm and yours are equally good. You

might argue that you would never want to �nd the center or avoid walls

altogether, and that gets to the limitation of the No Free Lunch theorem.

While it may be true that no algorithm is better than any other, when

averaged over every absurd task that can possibly be imagined, it is per-

fectly possible that an algorithm would be better than others on the

kinds of tasks that we call “problems.” If anything, the NFL theorem

makes us think about what it is that we try to address with an
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optimization algorithm. Most things, even in a �nite universe, do not

qualify as problems; this may be more a re�ection of our way of thinking

than anything inherent in mathematics or in the world. Suf�ce it to say,

we do not feel uncomfortable saying that one algorithm, which can reli-

ably �nd global optima in real problem spaces, is better than another,

which can �nd answers to questions that no one would ever ask.

Multimodality

As part of Bill Spears’ investigations of the strengths and weaknesses of

genetic algorithms at the Naval Research Laboratory (NRL) and as a for-

mer graduate student of Ken De Jong’s, he has assembled and posted

online a collection of interesting test functions, problems that push

and pull and stretch an optimization algorithm to its limit to see what it

can and can’t do. If there is No Free Lunch, there might be at least Some

Kind of Lunch, and researchers want to know what their algorithm is

good at.

In collaboration with his NRL colleagueMitch Potter, Spears designed

and programmed a “multimodal random problem generator” (De Jong,

Potter, and Spears, 1997). The rationale was this: obviously, if a re-

searcher precision-tunes an optimization algorithm to work on one

problem, there is a danger that it will fail on everything else. There was a

need for a way to come up with different problems, but with some con-

trollable characteristics. The random problem generator offers a way to

test an algorithm on novel problems, controlling some aspects of the

problems that are expected to affect performance.

Multimodality, in this context, means that a problem has more than

one solution or global optimum, conceived as peaks on the �tness land-

scape. For instance, the problem x2 = 25 is multimodal; it has two opti-

mal solutions: x = +5 and x = −5. Since a genetic algorithm is often im-

plemented using binary encoding, Spears wrote the program to create

multimodal binary problems for the GA to solve. The concept is very

straightforward. The researcher de�nes the dimensionality of the prob-

lem, that is, the length of the bitstring, and how many modes or peaks

are desired, and the program creates that number of bitstrings, made of

random sequences of zeroes and ones. For instance, imagine a researcher

has speci�ed that dimensionality N = 10 and multimodality or num-

ber of peaks P = 5. The problem generator might produce these

bitstrings:
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0100110111

1110010010

1101101010

0100000000

1110100101

With 10-dimensional bitstrings there are 210= 1,024 possible patterns of

bits. The goal for the optimizing algorithm is to �nd any one of the �ve

peaks that have been de�ned by the program. The Hamming distance be-

tween a bitstring and the nearest optimum provides a �tness evaluation;

that is, the more similar the bitstring is to one of the speci�ed peaks, the

�tter it is. For 10-dimensional bitstrings, the farthest an individual can

be from a peak is 10 Hamming units, and of course a perfect match is a

distance of zero from one of the peaks.

Multimodal problems can be hard for genetic algorithms. Recall that

in GAs, chromosomes cross over in every generation; sections of success-

ful ones are joined together to produce the next generation’s population.

In a multimodal situation it is entirely possible that the parts that are

joined together come from chromosomes whose �tness derives from

their proximity to different optima. For instance, the chromosome

0100110110 is only one bit different from the �rst optimum de�ned

above, and 0110010010 is only one bit different from the second solu-

tion. Putting them together (we’ll cut it right in the middle to be fair)

could produce the child chromosome 0100110010, which is three bits

different from the �rst optimum (Hamming distance = 3) and three bits

different from the second—moving away from both of them. It is exactly

the multimodality of the problem that makes crossover ineffective in

this case.

GAs rely not only on recombination but on mutation (and some-

times other operators) for moving through a problem space. De Jong,

Potter, and Spears tried several modi�cations of GAs, including one

whose only operator was mutation—no crossover—in the multimodal

random problem generator, calling it GA-M. In this algorithm, each site

on each bitstring has a low probability of changing from a zero to a one

or vice versa, usually less than 0.01. At each generation the population is

evaluated, the �ttest ones are selected, and mutation is applied to them.
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Through this process, generations tend to improve; this amounts to a

kind of stochastic hill climbing, as the more �t members of the popula-

tion are more likely to be retained and mutated.

De Jong, Potter, and Spears also tested a GA implemented with cross-

over only—no mutation—and found that this kind tended to �ounder in

the early generations, but once the population started to converge on

one particular peak or another, improvement came relatively fast. These

crossover-only GAs, called GA-C, were very successful at �nding one

of the optima, if you waited long enough. The same was true of tradi-

tional GAs with both crossover and mutation. Mutation-only GAs, on

the other hand, constantly improved, generation by generation, but if

the dimensionality of the problem was high, the chance of mutating in a

direction that led to improvement was very small and grew smaller as the

population approached the optimum. When bitstrings were short, mu-

tating chromosomes found optima quickly and ef�ciently, but “the curse

of dimensionality”made bigger problems too dif�cult for them. Though

they might have eventually found the global optimum, improvement
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decelerated over time. Figure 7.4 shows the performance of the three

types of genetic algorithms.

In a follow-up to the De Jong et al. study, Kennedy and Spears (1998)

compared the binary particle swarm algorithm with the three variations

of GAs in the multimodal random problem generator. The study was

constructed in the form of an experiment, where three independent vari-

ables were manipulated—algorithm, dimensionality, and multimodal-

ity. There were four kinds of algorithms (GA-C, GA-M, GA, and PS), two

levels of dimensionality (20 and 100), and two levels of multimodality

(20 and 100). In each of the 16 conditions of the experiment, there were

20 observations, and the population size was 100. (This population size,

which is much bigger than a typical particle swarm, was used tomake the

two paradigms commensurate.)

The dependent variable in Kennedy and Spears’ experiment was the

shape of the best-so-far performance curves over time. This is a multi-

variate measure, more complicated than those found in the typical ex-

periment, but easily computable with good statistical software. Each

condition in the experiment was run 20 times for 20,000 evaluations.

Themean best performance was calculated after 20 evaluations, and after

1,000, 2,000, and so on up to 20,000. It was possible to statistically

compare the shapes of the performance curves for all comparisons, the

question being not how well the various algorithms perform in the long

run over the dimensionality and multimodality conditions, but how

changes in their performance differed over time (see Figure 7.5).

GA-M performed best of all the algorithms in the early iterations of

every condition, but was quickly overtaken by all the others, except in

the “lite” condition, with short, 20-bit bitstrings and only 20 peaks.

When either dimension or modality or both increased, however, GA-M

suffered in its ability to �nd one of the peaks. The two GA variations with

crossover, that is GA-C and GA—which implemented both crossover and

mutation—started in every condition with a “dip” in performance, and

then rose toward an optimum, almost always �nding one of the peaks by

the 20,000th evaluation.

The binary particle swarm performed the best in all conditions except

the “lite” one (where it was second best); it found a global optimum on

every trial in every condition and did it faster than the comparison algo-

rithms. This is not to say that it would have performed better than any

GA on these problems, and it may be possible to tune the parameters of a

GA to optimize its performance in a particular situation. On the other

hand, the signi�cance of these results—which were statistically sig-

ni�cant in a multivariate analysis of variance (MANOVA)—should not
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