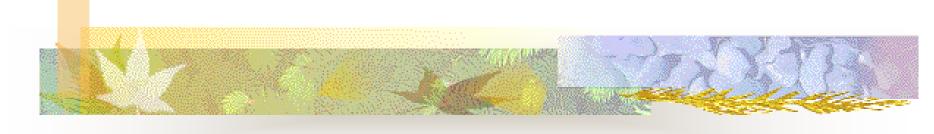
第二章 线性规划

(Linear Programming)



本章主要内容:

- 第一节 线性规划的模型与图解法
- 第二节 单纯形法
- 第三节 对偶问题与灵敏度分析
- 第四节 运输问题
- 第五节 线性整数规划

第一节 线性规划的模型与图解法

一、线性规划问题及其数学模型

在生产管理和经营活动中经常需要解决:如何合理地利用有限的资源,以得到最大的效益。

例1 某工厂可生产甲、乙两种产品,需消耗煤、电、油三种资源。现将有关数据列表如下:

资源单耗 产品	甲	Z	资源限量
资源			
煤 (t)	9	4	360
电(kw.h)	4	5	200
油(t)	3	10	300
单位产品价格(万元	7	12	
)			

试拟订使总收入最大的生产方案。

线性规划模型的三要素

- 1. 决策变量: 需决策的量, 即待求的未知数;
- 2. 目标函数:需优化的量,即欲达的目标,用决策变量的表达式表示;
- 3. 约束条件:为实现优化目标需受到的限制,用 决策变量的等式或不等式表示:

在本例中

决策变量: 甲、乙产品的计划产量为x_{1、}x₂,

目标函数:总收入,记为z,则z=7 x_1 +12 x_2 ,为体现对其

追求极大化,在z的前面冠以极大号Max;

约束条件:分别来自资源煤、电、油限量的约束,和产量非负的约束,表示为

$$s.t.\begin{cases} 9x_1 + 4x_2 \le 360 \\ 4x_1 + 5x_2 \le 200 \\ 3x_1 + 10x_2 \le 300 \\ x_1, x_2 \ge 0 \end{cases}$$

解:设安排甲、乙产量分别为 x_1, x_2 ,总收入为z,则问题1求解最优方案的数学模型为:

$$Maxz = 7x_1 + 12x_2$$

$$5x_1 + 4x_2 \le 360$$

$$4x_1 + 5x_2 \le 200$$

$$3x_1 + 10x_2 \le 300$$

$$x_1, x_2 \ge 0$$

线性规划模型的一个基本特点:

目标和约束均为变量的线性表达式

如果模型中出现如

$$x_{1}^{2} + 2 \ln x_{2} - \frac{1}{x_{3}}$$

的非线性表达式,则属于非线性规划。

例2 某市今年要兴建大量住宅,已知有三种住宅体系可以 大量兴建,各体系资源用量及今年供应量见下表:

资源	造价	钢材	水泥	砖	人工
住宅体系	$(元/m^2)$	(公斤	(公斤	(块/m²)	(工日
砖混住宅	105	/ m²)	/m²	210	/ m 2)
壁板住宅	135	30	190		3.0
大模住宅	120	25	180		3.5
资源限量	110000	20000	150000	147000	4000
	(千元)	(吨)	(吨)	(千块)	(千工日)

要求在充分利用各种资源条件下使建造住宅的总面积为最大(即求安排各住宅多少m²),求建造方案。

解:设今年计划修建砖混、壁板、大模住宅各为 x_1,x_2,x_3 m², z为总面积,则本问题的数学模型为:

$$Maxz = x_1 + x_2 + x_3$$

$$\begin{cases}
0.105x_1 + 0.135x_2 + 0.120x_3 \le 110000 \\
0.012x_1 + 0.030x_2 + 0.025x_3 \le 20000 \\
0.110x_1 + 0.190x_2 + 0.180x_3 \le 150000 \\
0.210x_1 \le 147000 \\
0.0045x_1 + 0.003x_2 + 0.0035x_3 \le 4000 \\
x_1, x_2, x_3 \ge 0
\end{cases}$$

前苏联的尼古拉也夫斯克城住宅兴建计划采用了上述模型,共用了12个变量,10个约束条件。

练习:某畜牧厂每日要为牲畜购买饲料以使其获取A、B、C、D四种养分。市场上可选择的饲料有M、N两种。有关数据如下:

を言いい	体 从	名	事公斤含营	养成分	
饲料	售价	A	В	C	D
M	10	0.1	0	0.1	0.2
N	4	0	0.1	0.2	0.1
牲畜每日每头需要量		0.4	0.6	2.0	1.7

试决定买M与N二种饲料各多少公斤而使支出的总费用为最少?

解:设购买M、N饲料各为 X_1, X_2 ,则

$$Minz = 10x_1 + 4x_2$$

$$\begin{cases} 0.1x_1 + 0x_2 \ge 0.4 \\ 0x_1 + 0.1x_2 \ge 0.6 \\ 0.1x_1 + 0.2x_2 \ge 2.0 \\ 0.2x_1 + 0.1x_2 \ge 1.7 \\ x_1, x_2 \ge 0 \end{cases}$$

线性规划模型的一般形式: (以MAX型、 ≤约束为例)

决策变量:

$$x_{1}, L, x_{n}$$

目标函数:

$$Maxz = c_1 x_1 + L + c_n x_n$$

约束条件:

$$S.t.\begin{cases} a_{11}x_{1} + L + a_{1n}x_{n} \leq b_{1} \\ L \\ a_{m1}x_{1} + L + a_{mn}x_{n} \leq b_{m} \\ x_{1}, L, x_{n} \geq 0 \end{cases}$$

模型一般式的矩阵形式

记
$$X = (x_1, L, x_n)^T, C = (c_1, L, c_n), A = (a_1)_{max}, b = (b_1, L, b_n)^T$$

则模型可表示为

X称为决策变量向量,C 称为价格系数向量,A称为技术系数矩阵,b称为资源限制向量。

问题: 为什么 A 称为技术系数矩阵?

回顾例1的模型

其中

$$X = (x_1, x_2)^T$$
 表示决策变量的向量; $C = (7,12)$ 表示产品的价格向量;

$$b = (360,200,300)^{T}$$
表示资源限制向量;

$$A = \begin{pmatrix} 9 & 4 \\ 4 & 5 \\ 3 & 10 \end{pmatrix}$$
 表示产品对资源的单耗系数矩阵。

1.1.3 线性规划应用举例

例(下料问题) 某工厂要做 100 套钢架, 每套用长为 2.9 m, 2.1 m, 1.5 m 的圆钢各一根。已知原料每根长 7.4 m, 问: 应如何下料, 可使所用原料最省?

解: 共有 8 种下料方案,如表所示。

方案	方案 1	方案 2	方案 3	方案 4	方案 5	方案 6	方案 7	方案 8
2.9 m	2	1	1	1	0	0	0	0
2.1 m	0	2	1	0	3	2	1	0
1.5 m	1	0	1	3	0	2	3	4
合计	7.3	7.1	6.5	7.4	6.3	7.2	6.6.	6
剩余料头	0.1	0.3	0.9	0	1.1	0.2	0.8	1.4

方案	方案 1	方案 2	方案 3	方案 4	方案 5	方案 6	方案 7	方案 8
2.9 m	2	1	1	1	0	0	0	0
2.1 m	0	2	1	0	3	2	1	0
1.5 m	1	0	1	3	0	2	3	4
合计	7.3	7.1	6.5	7.4	6.3	7.2	6.6.	6
剩余料头	0.1	0.3	0.9	0	1.1	0.2	0.8	1.4

设 $x_1, x_2, x_3, x_4, x_6, x_7, x_8$ 分别为上述 8 种方案下料的原材料根数,建立如下的 LP 模型:

$$\min z = x_1 + x_2 + x_3 + x_4 + x_6 + x_7 + x_8$$

$$= 100$$

$$2x_1 + x_2 + x_3 + x_4 = 100$$

$$2x_2 + x_3 + 3x_5 + 2x_6 + x_7 = 100$$

$$x_1 + x_3 + 3x_4 + 2x_6 + 3x_7 + 4x_8 = 100$$

$$x \ge 0 (i = 1, 2, \dots, 8)$$

例(汽油调和问题):新星炼油厂生产的70,80,85号三种汽油由三种原料调和而成,且有不同的质量要求。每种原料每日可用数量、质量指标、成本以及每种汽油的质量要求和价格见表。该炼油厂如何调和才能使利润最大?假定调和中的质量指标都符合线性相加关系。

汽油原料数据

原料	辛烷值	含硫量	成本	可用量
	0/0	0/0	(元/吨)	(吨/日)
直馏汽油	62	1.5	600	2000
催化汽油	78	0.8	900	1000
重整汽油	90	0.2	1400	500

产品汽油数据

产品	辛烷值	含硫量	销售价格
	0/0	0/0	(元/吨)
70 # 汽油	≥ 70	≤ 1.0	900
80 # 汽油	≥ 80	≤ 1.0	1200
85 # 汽油	≥ 85	≤ 0.6	1500

问题分析:

- •问题类型:最优调和方案 什么原料调入什么产品,调入的数量是多少
- •目标:调和方案的利润最大 利润=销售收入-调和成本 = 产品价格*销售数量-原料成本*用量
- •变量:产品数量?原料数量?其他物理量?j产品生产数量=各原料调入j产品数量和i原料使用数量=i原料调入各产品的数量和

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/208140054053006072