《事务管理》PPT课件(2)



制作人:PPT创作创作

时间:2024年X月

目录

第1章 事务管理概述 第2章 事务的并发控制 第3章 事务的恢复机制 第4章 事务管理的性能优化 第5章 事务管理的实践案例 第6章 总结与展望

什么是事务管理

事务管理是数据库管理系统中对事务进行管理的过程。它确保事务具有原子性、一致性、隔离性和持久性,以维护数据完整性和一致性。

事务管理的重要性

最小单位

数据库操作的最小 单位

恢复机制

直接影响数据库的 恢复机制

并发控制

直接影响数据库的 并发控制

ACID特性

ACID是事务的四个特性: 原子性、一致性、隔离性、 持久性。原子性要求事务 要么全部成功,要么全部 失败;一致性指事务执行 前后数据库状态一致; 高性确保多个事务互相独 立;持久性保证事务提交 后对数据库的改变是永久 的。

事务管理流程

开始事务

确定事务开始 分配事务资源

执行事务操作

读取/写入数据 执行SQL语句

提交或回滚事务

确认操作结果 决定是否提交事务

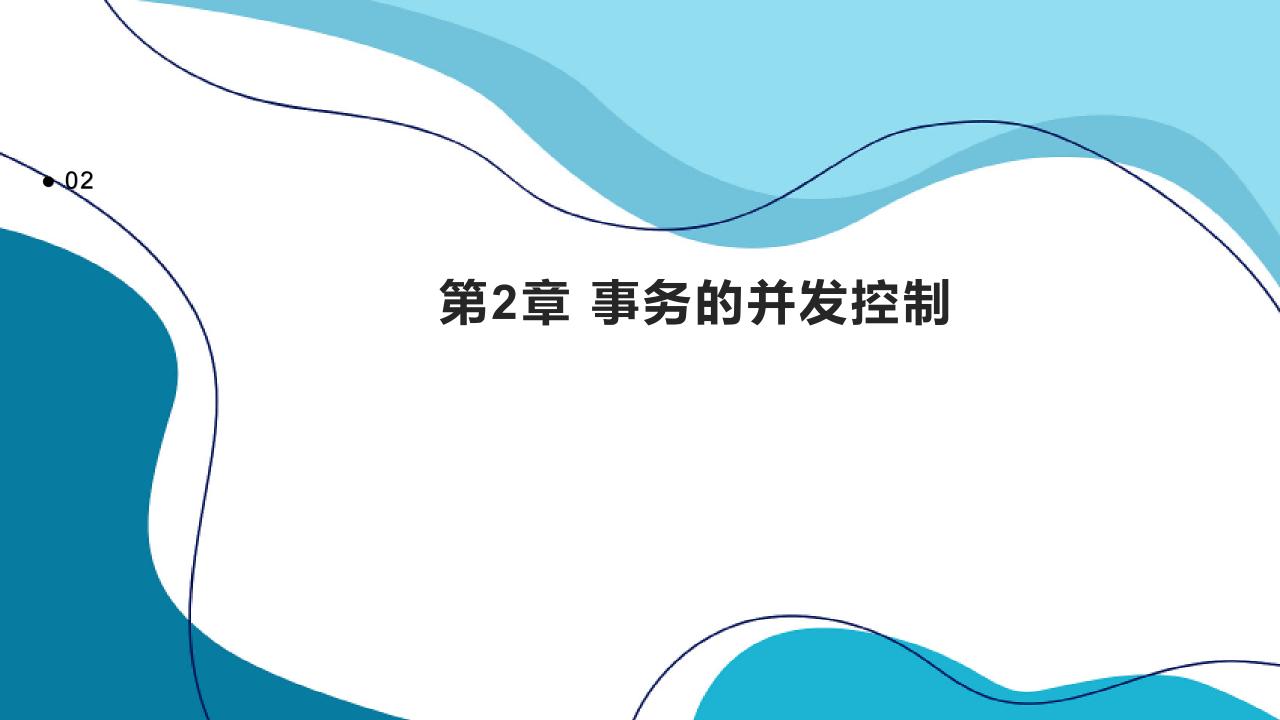
结束事务

释放资源 事务结束

事务管理的优势

原子性

保证事务的完整性


隔离性

避免事务互相影响

持久性

保证事务提交后的 数据永久性 一致性

维护数据一致性

事务的隔离级别

并发控制的实现方式

锁机制

行级锁、表级锁、 页级锁

MVCC

多版本并发控制, 保存不同版本的数 据

时间戳

为每个事务分配唯 一的时间戳

死锁处理

死锁产生条件

互斥、请求保持、 不可剥夺、循环等 待

处理方式

超时机制、死锁检 测和回滚、事务优 先级

并发控制算法分 析

并发控制算法的优点是提 高数据库系统的并发访问 性能,但也会增加系统的 复杂度和开销。需要仔细 考虑选择合适的并发控制 算法,以平衡性能和资源 消耗的关系。

日志系统

日志系统是事务管理中非 常重要的组成部分,包括 日志记录、日志类型和日 志管理。日志记录包括 before image和after image,而日志类型则分 为redo log和undo log。 日志管理涉及日志的写入、 刷盘、压缩和归档等操作。

事务恢复的过程

REDO恢复

根据日志重做事务 操作

恢复过程

检查点、日志分析、 重做、回滚

UNDO恢复

根据日志回滚事务操作

恢复策略

系统崩溃

通过日志恢复到事务开始前的 状态

介质故障

通过备份和日志恢复到最近的 一致状态

优势

灵活、高效

劣势

需要较大的空间和资源

恢复性能优化

Checkpoint 机制

减少恢复时间

日志刷盘策略

平衡写入性能和数据安全

优化建议

定期检查、自动化 处理、监控日志 日志预写

提高日志写入性能

总结

事务的恢复机制是数据库管理中至关重要的一环,合理的恢复策略和性形优化对系统的稳定性和可靠性至关重要。通过日志系统的建立和管理,可以有效提高系统的可恢复性和稳定性。

01 **系统崩溃** 通过日志恢复到事务开始前的状态

02 介质故障

通过备份和日志恢复到最近的一致状态

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/218075001001006051