第2章 MATLAB基本操作

本章内容

MATLAB的基本数学函数和常用命令的使用; MATLAB的基本输入/输出函数及其应用; MATLAB的外部命令调用方法; MATLAB的基本数值运算方法; MATLAB的基本符号运算方法。

2.1 MATLAB语言的结构

MATLAB语句的一般形式为 变量名=表达式

其中等号右边的表达式可由操作符或其它字符、函数和变量名组成,它可以是MATLAB允许的数学或矩阵运算,也可以包含MATLAB下的函数调用;等号左边的变量名为MATLAB语句右边表达式的返回值语句所赋值的变量的名字。

在调用函数时,MATLAB允许一次返回多 个结果,这时等号左边的变量名需用[]括 起来,且各个变量名之间用逗号分隔开。 MATLAB语句结构形式中的等号和左边的 变量名也可以缺省,此时返回值自动赋给变 量ans。

1. MATLAB的变量名

在MATLAB中变量名必须以字母开头,之 后可以是任意字母、数字或者下划线(不能 超过19个字符),但变量中不能含有标点符号。 变量名区分字母的大小写,同一名字的大写 与小写被视为两个不同的变量。 ● 一般说来,在MATLAB下变量名可以为任 意字符串,但MATLAB保留了一些特殊的字

符串如表2-1所示。

表2-1 MATLAB中的特殊变量

特殊变量	取 值	特殊变量	取 值
ans	默认变量名	nargin	函数的输入变量数目
pi	圆周率(π=3.1415926 …)	nargout	函数的输出变量数目
i或j	基本虚数单位	realmin	系统所能表示的最小数值
inf或Inf	无限大,如1/0	realmax	系统所能表示的最大数值
nan或NaN	不定量,如0/0,∞/∞,0*∞	lasterr	存放最新的错误信息
eps	浮点相对精度	lastwarn	存放最新的警告信息

2. MATLAB的算术运算符 MATLAB中使用的算术运算符如表2-2所示。

表2-1 MATLAB中的算术运算符

算术运算符	意义	算术运算符	意义
+	加	\backslash	左除
—	减	/	右除
*	乘	^	幂

对于矩阵来说,这里左除和右除表示两种 不同的除数矩阵和被除数矩阵的关系。对于 标量,两种除法运算的结果相同,如1/4和4\1 有相同的值0.25。 常用的十进制符号如小数点、负号等,在 MATLAB中也可以同样使用,表示10的幂次 要用符号e或E,如:3、-99、0.0001、1.6e-2 0, 6.2e23

3. MATLAB的基本数学函数

为了方便用户,MATLAB提供了丰富的 库函数,库函数是根据系统已经编制好了的, 提供用户直接使用的函数。 其中MATLAB中常用的基本数学函数, 如表2-3所示。

表2-3 MATLAB的基本函数

函数名	含义	函数名	含义
sin()	正弦	sqrt()	平方根
()	余弦	real()	实部
tan	正切	imag()	虚部
asin()	反正弦	conj()	复数共轭
acos()	反余弦	round(4舍5入到整数
atan()	反正切	fix()	舍入到最接近0的整数
atan2()	第四象反正切	floor()	舍入到最接近-∝的整数
sonh()	双曲正弦	ceil()	舍入到最接近+∝的整数
cosh()	双曲余弦	sign()	符号函数
tanh()	双曲正切	rem()	留数
exp()	自然指数	bessel()	贝塞尔函数
log()	自然对数	gamma()	伽吗函数
log10()	以10为底的对数	rat()	有理逼近
abs()	绝对值或模	rand()	随机数

除了基本函数外,不同版本的MATLAB 还增加了具有不同功能的库函数,也称工具 箱或模块集。

例如电力系统工具箱、控制系统工具箱
 和信号处理工具箱等等等等。

对于各种函数的功能和调用方法可使用 MATLAB的联机帮助help来查询,例如:
>>help sin %得到正弦函数的使用信息;
>>help [%显示如何使用方括号。

2.1 MATLAB的窗口命令

- MATLAB命令窗口就是MATLAB语言的 工作空间,因为MATLAB的各种功能的执行必 须在此窗口下才能实现。
- 所谓窗口命令,就是在上述命令窗口中输入的MATLAB语句,并直接执行它们完成相应的运算等。

2.2.1 窗口命令的执行及回调1. 窗口命令的执行

MATLAB命令语句能即时执行,它不是输入 完全部MATLAB命令语句经过编译、连接形成 可执行文件后才开始执行,而是每输入完一条 命令,MATLAB就立即对其处理,并得出中间 结果,完成了MATLAB所有命令语句的输入,也 就完成了它的执行,直接便可得到最终结果。 从这一点来说,MATLAB清晰地体现了类似 "演算纸"的功能。

●例如 • >>a=5; • >>b=6; • >>c=a*b, $\bullet >> d = c + 2$ 其中第3,4条命令的执行结果分别显示 如下: c =30 d =32

注意,以上各命令行中的">>"标志为
 MATLAB的命令提示符,其后的内容才是用户
 输入的命令语句。每行命令输入完后,只有当
 用回车键进行确定后,命令才会被执行。

MATLAB语句既可由分号结束,也可由逗号 或换行号结束,但它们的含义是不同的。如果 用分号";"结束,则说明除了这一条命令 <u>外还有下一条命令等待输入,MATLAB这时将不</u> 立即显示运行的中间结果, 而等待下一条命令 的输入,如以上前两条命令;如果以逗号 ","或回车结束,则将把左边返回的内容全 部显示出来,如以上后两条命令。

 当然在任何时候也可输入相应的变量名来 查看其内容。如

- •>>a
- a=
- 5
- 在MATLAB中,几条语句也可以出现在 同一行中,只要用分号或逗号将它们分割。 例如
- >>a=5;b=6;c=a*b, d=c+2
- 这时可得与上面相同的结果。

2.2.2 窗口变量的处理

1. 变量的保存

- MATLAB工作空间中的变量在退出 MATLAB时会丢失,如果在退出MATLAB 前想将工作空间中的变量保存到文件中, 则可以调用save命令来完成,该命令的调 用格式为
- ●>>save 文件名 变量列表 其它选项
- 注意这一命令中不能使用逗号,不同的元素之间只能用空格来分隔。

例如,想把工作空间中的a,b,c变量存到 mydat.mat文件中去,则可用下面的命令 来实现。

>>save mydat a b c 这里将自动地使用文件扩展名mat。如果想将整个工作空间中所有的变量全部存入该文件,则应采用下面的命令。

>>save mydat

 当然这里的mydat也可省略,这时将工作 空间中的所有变量自动地存入到文件 matlab.mat中了。

应该指出的是,这样存储的文件均是按照 二进制的形式进行的,所以得出的文件往往 是不可读的,如果想按照ASCII码的格式来存 储数据,则可以在命令后面加上一个控制参 数-ascii,该选项将变量以单精度的ASCII码形 式存入文件中去,如果想获得高精度的数据。 则可使用控制参数: -ascii -double。

2. 变量的调取

 MATLAB提供的load命令可以从文件中 把变量调出并重新装入到MATLAB的工 作空间中去,该函数的调用格式与save命 令同。

当然工作空间中变量的保存和调出也可利用菜单项中的File|Save Workspace As
 …和File|Open命令来完成。

 如果想查看目前的工作空间中都有哪些 变量名,则可以使用who命令来完成。例如 当MATLAB的工作空间中有*a*,*b*,*c*,*d*四个变量 名时,使用who 命令将得出如下的结果。
 >>who

•your variable are:

• a b c d

• 想进一步了解这些变量的具体细节,则可以使用whos命令来查看。

了解了当前工作空间中的现有变量名之后, 则可以使用clear命令来删除其中一些不再使 用的变量名,这样可使得整个工作空间更简 洁,节省一部分内存,例如想删除工作空间 中的a,b两个变量,则可以使用下面的命令

\bullet >>clear a b

如果想删除整个工作空间中所有的变量,
 则可以使用以下命令

• >>clear

2.2.3 窗口命令的属性

在MATLAB操作界面中,用户可以根 据自己的需要,对窗口命令的字体风格、 大小和颜色等进行自定义的设置。 利用MATLAB操作界面中的菜单命令 File→Preferences命令可打开Preferences参 数设置窗口,用户可以在此设置字体格 式等,如图2-1所示。

2.2.4 数值结果显示格式

- MATLAB可以使用format命令来改变
 显示格式,其调用格式为
 format 控制参数
- 其中 控制参数决定显示格式,控制参数 如表2-4表示。
- 除format命令外,还可由MATLAB命 令窗口的Options|Numeric Format菜单项 来设置显示形式。

表2-4 format命令的控制参数

控制参数	意义	例 100/3
short	5位有效数字,同默认显示	33.3333
long	长格式,15位有效数字	33.3333333333333334
short e	短格式,5位有效数字的浮 点数	3.3333e+001
long e	长格式,15位有效数字的 浮点数	3.3333333333333334e+001
hex	十六进制格式	4040aaaaaaaaaaaaaaaab
bank	2个十进制位	33.33
+	正、负或零	+
rat	有理格式	100/3

2.2.5 基本输入与输出函数

除上面提到的用于机器间交换数据的 命令语句save和load外,MATLAB还允许计 算机和用户之间进行数据交换,允许对文 件进行读写操作。

1. 输入函数

如果用户想在计算的过程中给计算机输入 一个参数,则可以使用input()函数来进行, 该函数的调用格式为 ● 变量名=input(提示信息,选项) ● 这里提示信息可以为一个字符串显示, 它用 来提示用户输入什么样的数据, input()函数 的返回值赋给等式左边的变量名。

例如,用户想输入x的值,则可以采用下面的命令来完成

- >x=input('Enter matrix x=>');
- 执行该命令时首先给出Enter matrixA=> 提示信息,然后等待用户从键盘按MATLAB格式输入值,并把此值赋给x。
 如果在input()函数调用时采用了's'选项,则允许用户输入一个字符串,此时需用单引号将所输字符串括住。

- 2. 输出函数
- MATLAB提供的命令窗口输出函数主要有disp()函数,其调用格式为
 disp(变量名)
- 其中变量名既可以为字符串,也可以为变量矩阵。例如
- >>s= 'Hello World',
 s=
 - Hello World
 >>disp(s) Hello World

3. 字符串转换函数

 MATLAB提供了较实用的字符串处理及转换的函数, 例如int2str()函数就可以方便在将一个整形数据转换 成字符串形式,该函数的调用格式为

ocstr=int2str(n)

- 其中 n为一个整数,而该函数将返回一个相关的字符 串cstr。
- 例如 num的数值为num=15,而在输出中还想给出 其它说明性附加信息,则可利用下面的语句
- >disp (['The value of num is ',int2str(num), '!ok'])
 - •这样可得
 - The value of num is 15 !ok

与int2str()函数的功能及调用方式相似, MATLAB还提供了num2str()函数,可以将给出的实型数据转换成字符串的表达式,最终也可以 将该字符串输出出来。例如给绘制的图形赋以数 字的标题时可采用下面的命令

• >>c=(70-32)/1.8;

>title(['Room temperature is ',num2str(c), 'degrees C'])

•则会在当前图形上加上题头标注

• Room temperature is 21.1111 degrees C

2.2.5 外部程序的调用

MATLAB允许在其命令窗口中调用可执行文件 (.exe),其调用方法是在MATLAB提示符下键入 惊叹号!后面直接跟该可执行文件即可。

MATLAB也允许采用这样的方式来直接使用
 DOS命令,如磁盘复制命令copy可以由!copy来直接
 使用,而文件列表命令dir可以由!dir来调用。

事实上,为了使用户提供更大的方便, MATLAB已经把一些常用的DOS命令做成了相应的 MATLAB命令,表2-5列出了MATLAB中提供的一些 文件管理命令。

表2-5 文件管理命令

命令	注释
what	列出当前目录下所有的m文件
dir	列当前目录下所有的文件
1s	与dir命令相同
type myfile	在命令窗口中显示文件myfile.m的内容
delete myfile	删除文件myfile.m
cd path	进入子目录path
which myfile	显示文件myfile.m所在的路径

2.3 MATLAB的数值运算

 MATLAB具有强大的数值能力,它不仅能 对矩阵和向量进行相应的运算,而且也可进 行关系运算、逻辑运算和多项式运算等问题。

2.3.1 矩阵运算

MATLAB的基本数据单元是不需要指定维数的复数矩阵,它提供了各种矩阵的运算与操作,因它既可以对矩阵整体地进行处理,也可以对矩阵的某个或某些元素进行单独地处理,所以在MATLAB环境下矩阵的操作同数的操作一样简单。

1. 矩阵的实现

- 在MATLAB语言中不必描述矩阵的维数 和类型,它们是由输入的格式和内容来确 定的,例如当
- $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 时,把A自动当作一个2×2的矩阵;
- A=[1 2] 时,把A当作一个2维向量
- A = 2 时,把A自动当作一个2维列向量;
- *A*=5 时, 把*A*当作一个标量; *A*=1+2i 时, 把*A*当作一个复数。

1)矩阵的赋值 矩阵可以用以下几种方式进行赋值

- •* 直接列出元素的形式;
- •* 通过语句和函数产生;
- •* 建立在文件中;
- •* 从外部的数据文件中装入。

•(1) 简单矩阵的输入 对于比较小的简单矩阵可以使用直接排列 的形式输入,把矩阵的元素直接排列到方括 号中,每行内的元素间用空格或逗号分开, 行与行的内容用分号隔开。 1 2 3 例如矩阵A= 4 5 6 7 8 9 ● 在MATLAB下的输入方式为 • >>A=[1, 2, 3; 4, 5, 6; 7, 8, 9]• 或 >>A=[1 2 3; 4 5 6; 7 8 9] 都将得相同的结果 38

对于比较大的矩阵,可以用回车键代替分 号,对每一行的内容分行输入,也可利用续行符号(...),把一行的内容分两行来输入。 如前面的矩阵还可以等价地由下面两种方式 来输入。 • $>>A=[1 \ 2 \ 3 ; 4 \ 5 \ 6]$ 7 8 9 • 或 >>A=[1 2 3 ;4 5 ... 6; 7 8 9] 输入后A矩阵将一直保存在工作空间中,除 非被替代和清除,在MATLAB的命令窗口中可 随时查看其内容。

(2)利用语句或函数产生矩阵
在MATLAB中,矩阵也可利用下例语句来 产生

• s1:s2:s3

其中,s1为起始值;s3为终止值;s2为步矩。
 使用这样的命令就可以产生一个由s1开始,以
 步距s2自增,并终止于s3的行向量,如

• >>y=[0:pi/4:pi;0:10/4:10]

0 0.7854 1.5708 2.3562 3.1416
0 2.5000 5.0000 7.5000 10.0000

- •如果S2省略,则可以认为自增步距为1,例如
- •>>x=1:5 结果显示: x=

•y=

1 2 3 4 5

利用size()函数可测取一个矩阵的维数, 该函数的调用格式为 $\left[n, m\right] = size(A)$ ● 其中 A为要测试的矩阵名,而返回的两个 参数n和m分别为A矩阵的行数和列数。 当要测试的变量是一个向量时,当然仍可 由size()函数来得出其大小,更简洁地, 户可以使用length()函数来求出,该函数的 调用格式为 • n = length(x)

● 其中 x为要测试的向量名,而返回的n为向量x的元素个数。

如果对一个矩阵A用length(A)函数
 测试,则返回该矩阵行列的最大值,即
 该函数等效于max(size(A))。

•2) 矩阵的元素

- MATLAB的矩阵元素可用任何表达式来描述,它既可以是实数,也可以是复数,例如
 >>B=[-1/3 1.3; sqrt(3) (1+2+3)*i]
 - $\bullet B =$

-0.3333 + 0.0000i 1.3000 + 0.0000i 1.7321 + 0.0000i 0.0000 + 6.0000i MATLAB允许把矩阵作为元素来建立新的 矩阵,例如,利用A矩阵通过下面的语句 ->>A=[1 2 3;4 5 6;7 8 9];C=[A;[10 11 12]] MATLAB还允许对一个矩阵的单个元素进行赋值和操作,例如如果想将A矩阵的第2行第3列的元素赋为100,则可通过下面的语句来完成

- >>A(2,3)=100
 - A =
- •1 2 3
- •4 5 100
- •7 8 9
- 这时将只改变此元素的值,而不影响其它元素的值。

如果给出的行数或列数大于原来矩阵的范围,则MATLAB将自动扩展原来的矩阵,并将扩展后未赋值的矩阵元素置为0。
 例如如果想把矩阵A的第4 行第5列元素的

值定义为8,就可以通过下面语句来完成。

- A=
 - 1 2 3 0 0
 - 4 5 100 0 0
 - 7 8 9 0 0
 - 0 0 0 0 8

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: <u>https://d.book118.com/227004130060010001</u>