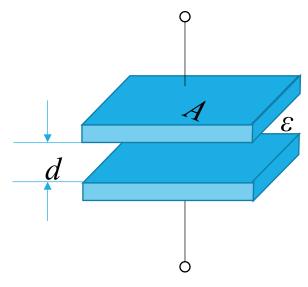

项目2热敏传感器应用电路设计或制作

电子体温计电路



3个电容器,起什么作用?

LM216集成运算芯片

- 带相位补偿的单集成运放
- 1脚、8脚-偏置调零
- 2脚、3脚-反相、同相输入
- 4脚-接地
- 5脚-相位补偿
- 6脚-输出
- 7脚-电源

水蒸汽	1.00785	聚本乙烯	2.4~2.6
氢气	1.00264	聚氯乙烯	3.1~3.5
空气	1.00074	超高频瓷	7~8.5
真空	1	橡胶	2~3
乙醇	25.7	纸	2.5
水	81.5	玻璃	5~10

3.1 电容器的结构及参数

● **结构**:两极板+绝缘介质

● 特征参数:电容量 $c = \frac{\mathcal{E}A}{d}$

ε:介电常数。反映介质导电能力的参数。

容量单位:

标准单位:法拉(F)

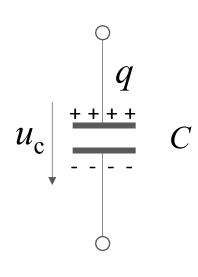
常用单位:F、μF、pF

换算关系:1F=10⁶ μF =10¹²pF

3.2 电容器的种类及电路符号

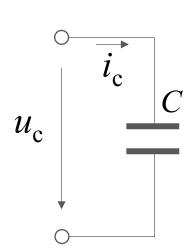
- 种类
 - 纸介电容器
 - 云母电容器
 - 陶瓷电容器
 - 有机薄膜电容器
 - 电解电容器
 - 独石电容器
 - 钽电容器
 - 可调电容器

项目2热敏传感器应用电路设计或制作


(a) 固定电容 (b) 可调电容

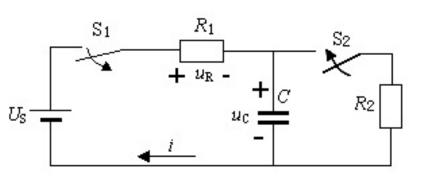
(C)电解电容器

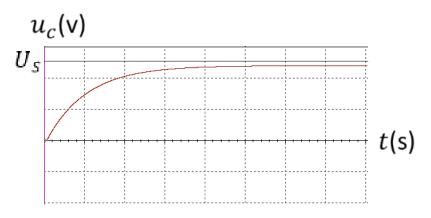
3.2 电容器的种类及电路符号


- 电路符号
 - 固定电容
 - 可调电容
 - 电解电容

● 储能特性

- 接通电源,极板积累电荷,形成电场,产生电压,储存电能。
- 电容量与电荷、电压的关系:

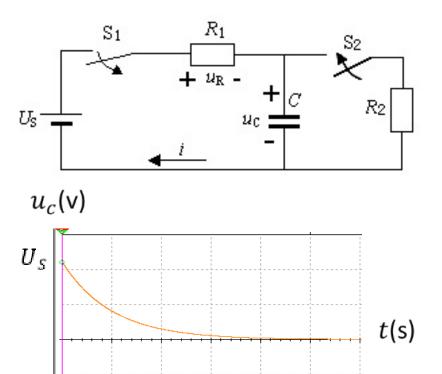

$$C = \frac{q}{u_c}$$



- 伏安特性
- 在电容电压与电流参考方向一致时:

$$i = C \frac{du_C}{dt} \qquad \text{if} \qquad u_c = \int i dt$$

- 任一时刻电容电路中的电流与该时刻电压的变化率成正比,与电压的大小无关。
- 电容元件在稳定直流电路中,相当于开路。
- · 电容具有**通交流、阻直流,通高频、阻低频**的特性。
- 电容元件两端的电压不能发生突变。

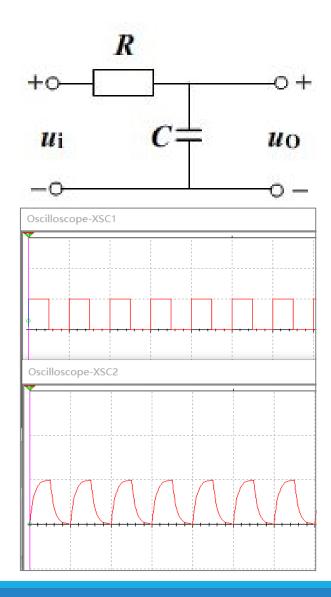


● 充电特性

图中,开关S1闭合,S2断开时,电容器充电,电 压变化规律为:

$$u_c = U_S(1 - e^{-\frac{t}{R_1 C}})$$

 R_1C -充电时间常数,用 τ 表示, τ 单位为s, τ 越大,电压上升的越慢。



● 放电特性

图中,开关S1断开,S2闭合时,电容器放电,电 压变化规律为:

$$u_c = U_S e^{-\frac{t}{R_2 C}}$$

 R_2C -放电时间常数,用 τ 表示, τ 单位为s, τ 越大,电压下降的越慢。

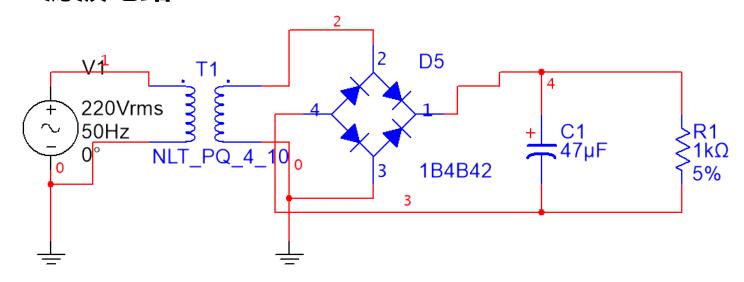
3.4 电容器的典型应用

● 信号波形转换

图示RC积分电路,R=10K Ω ,C=10µF,输入 u_i 为脉冲信号,频率为1HZ,幅值为5V,占空比为50%。输出 u_0 的波形?

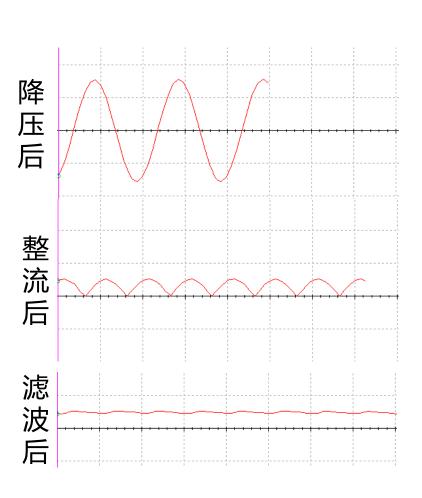
原理:

当脉冲信号为5V时,电容器按 $\tau=RC=0.1$ s充电。

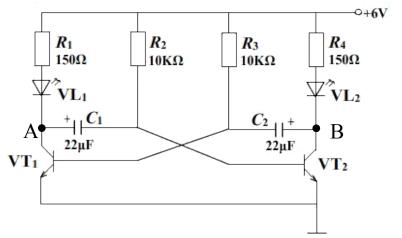

输入脉冲信号的周期T=1/f=1s,占空比为50%,正脉冲持续时间为0.5s。

当充电0.5s时,脉冲信号变为0,电容器放电,0.5s后脉冲信号变为5V又开始充电。

如此往复,矩形脉冲被转换成锯齿波。


3.4 电容器的典型应用

▶滤波电路


原理:

整流后的脉动直流电由不同频的正弦波叠加而成电容通高频阻低频,低频和直流信号流入负载高频信号被电容器旁路到地。

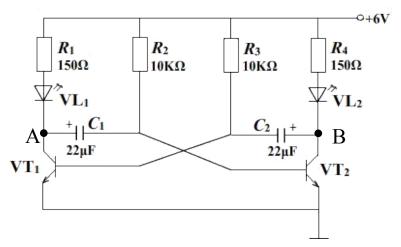
V_{CC} R_1 R_2 R_2 V_{CC} R_1 R_2 V_{CC} V_{CC}

基于555的多谐振荡电路 基于逻辑门的多谐振荡电路

基于分立元件的多谐振荡电路

3.4 电容器的典型应用

● 振荡电路


- 一般原理:
- 电容充电、放电,控制晶体管、MOS管等半导体器件导通和截止,在输出端交替产生高电平和低电平。
- 电容器是关键器件。

3.4 电容器的典型应用

● 振荡电路

聚集问题

- · 电路结构虽然完全对称,但实际工作中两个晶体 管一定有一个导电能力略强先导通。
- 若VT₁先导通,A点为低电位,通过电容器C₁的耦合,VT₂基极为低电位,VT₂截止,VL₁导通发光。电源通过R₂和VT₁给C₁充电,VT₂基极电位逐渐升高,当其达到阈值电压时,VT₂导通,B点为低电位,通过C₂耦合,VT₁基极为低电位,VT₁截止,VL₂导通发光。

基于分立元件的多谐振荡电路

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/235204331123012004