新开线蜗杆接触应力及传动效率 的研究

汇报人:PPT模板分享

2023-10-26

目 录

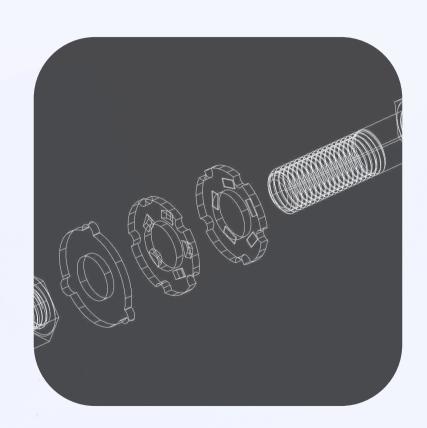
- ・研究背景与意义
- 文献综述
- 渐开线蜗杆接触应力分析
- 渐开线蜗杆传动效率研究
- ・渐开线蜗杆接触应力及传动效率实验研究
- ・结论与展望
- ・参考文献

01

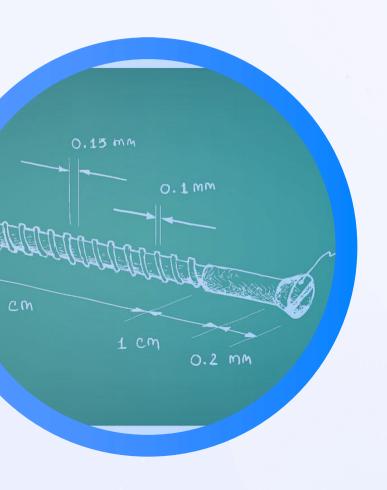
研究背景与意义

研究背景

1


渐开线蜗杆传动作为一种常见的机械传动形式, 广泛应用于工业、农业、国防等领域。

2


随着现代工业的发展,对于渐开线蜗杆传动的性能要求越来越高,需要对其进行深入的研究和改进。

3

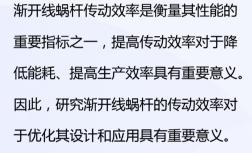
在渐开线蜗杆传动中,接触应力和传动效率是 影响其性能的关键因素,因此对这两个方面进 行研究具有重要的实际意义。

01 通过对渐开线蜗杆接触应力及传动效率的研究,可以深入了解 其力学特性,为传动系统的设计和优化提供理论支持。

02 研究结果可以为渐开线蜗杆传动的制造、使用和维护提供重要的指导,有助于提高其使用寿命和性能。

对于促进机械传动技术的发展和进步,具有重要的学术价值和 实际应用价值。 02

文献综述



渐开线蜗杆接触应力研究现状

蜗杆传动具有承载能力强、传动效率 高等优点,在工业、航空等领域得到 广泛应用。然而,渐开线蜗杆在传动 过程中存在接触应力,接触应力过大 将导致齿面磨损、胶合等失效形式。 因此,研究渐开线蜗杆的接触应力对 于提高其传动性能和寿命具有重要意 义。 在文献综述中,我们发现对于渐开线 蜗杆接触应力的研究主要集中在理论 分析、数值模拟和实验研究等方面。 其中,理论分析主要通过建立数学模 型对接触应力进行计算和分析,数值 模拟通过有限元等方法对接触应力进 行仿真计算,实验研究通过测量齿面 接触斑点、齿根弯曲应力等方法对接 触应力进行测量和分析。 然而,目前对于渐开线蜗杆接触应力的研究仍存在以下问题:1)理论分析模型尚不完善,缺乏对齿面摩擦、润滑等因素的考虑;2)数值模拟方法尚不成熟,难以准确预测接触应力分布;3)实验研究仅对少数样本进行了测量和分析,缺乏对不同设计参数和工况条件的考察。

渐开线蜗杆传动效率研究现状

在文献综述中,我们发现对于渐开线 蜗杆传动效率的研究主要集中在实验 研究方面。实验研究通过对不同设计 参数和工况条件的蜗杆副进行测试, 获得其传动效率数据。 然而,目前对于渐开线蜗杆传动效率的研究仍存在以下问题:1)实验研究仅对少数样本进行了测试和分析,缺乏对更多设计参数和工况条件的考察;2)实验过程中难以控制所有影响因素,如润滑条件、环境温度等;3)缺乏对蜗杆副内部能量损失的精确测量和分析。

研究方法及思路

01

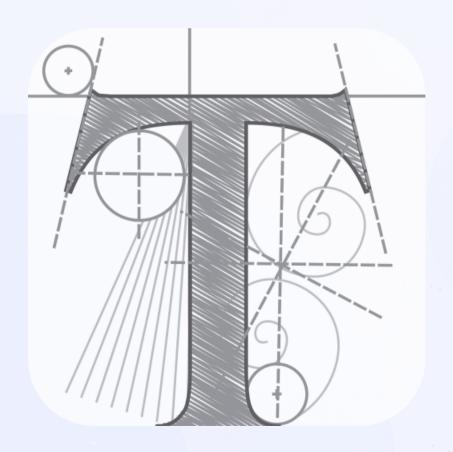
为了解决上述问题,本研究将采用理论分析、数值模拟和实验研究相结合的方法,对渐开线蜗杆接触应力及传动效率进行深入研究。具体思路如下

02

1.建立完善的渐开线蜗 杆接触应力理论分析模型,考虑齿面摩擦、润滑等因素的影响; 03

2.开发精确的数值模拟 方法,对不同设计参数 和工况条件的蜗杆副进 行接触应力分布和传动 效率的预测; 04

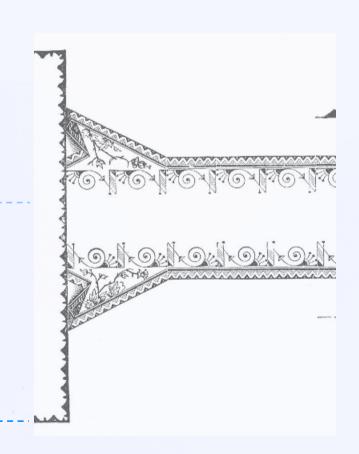
3.开展实验研究,通过 对不同设计参数和工况 条件的蜗杆副进行测试, 验证理论分析和数值模 拟结果的准确性; 05


4.基于实验数据,分析 渐开线蜗杆接触应力及 传动效率的影响因素和 规律,提出优化设计和 应用渐开线蜗杆的建议。

03

渐开线蜗杆接触应力分析

新开线蜗杆基本参数及啮合原理


渐开线蜗杆的基本参数包括模数、齿数、压力角、齿顶圆半 径、基圆半径等。

渐开线蜗杆的啮合原理是利用渐开线的形状,使两个蜗杆在 啮合时形成直线接触,从而传递动力。

接触应力计算方法

根据渐开线蜗杆的啮合原理,可以通过计算齿面间的接触点来确定接触应力。

接触应力的计算公式需要考虑齿面材料、齿面摩擦系数、齿面润滑情况等因素。

持

接触应力有限元分析

有限元分析是一种数值模拟方法,可以模拟渐开线蜗杆的啮合过程,从而得到齿面间的接触应力分布情况。

通过有限元分析,可以得出在不同工况和参数下,齿面间的接触应力分布情况,为渐开线蜗杆的设计和优化提供依据。

https://d.book118.com/238106061143006075

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: