
- 雷达简介
- 雷达技术基础
- 雷达系统与设备
- 雷达数据处理与分析
- 雷达应用案例展示
- 总结与展望

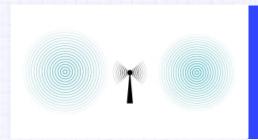
 \rightarrow \rightarrow \bigcirc

雷达的定义和作用

雷达是利用无线电波 探测目标并获取其信 息的电子设备。

雷达主要用于探测目 标的位置、速度和其 它特征。

雷达广泛应用于军事、 航空、气象等领域。


雷达的组成及工作原理

雷达主要由发射机、接收机、天线和显示器等组成。

雷达通过发射无线电波,并接收目标反射回来的无线电波,从而获取目标信息。

雷达工作原理是基于电磁波的传播特性,通过测量电磁波的传播时间、相位和振幅等参数来探测目标。

雷达的主要应用领域

军事应用

雷达主要用于军事侦察 、目标跟踪、火控系统 等。

航空应用

雷达主要用于空中交通管制、机场进近等。

气象应用

雷达主要用于天气预报 、气象观测等。

其它应用

雷达还广泛应用于交通 、资源勘探、环保等领 域。 **→** → — •

电磁波的传播特性

电磁波的传播速度

-

在真空中,电磁波以光速传播,不受介质影响。

电磁波的波长

 \rightarrow

波长是电磁波在一个周期 内传播的距离,单位通常 是米(m)或纳米(nm)

电磁波的频率


频率是电磁波每秒振动的次数,单位通常是赫兹(Hz)。

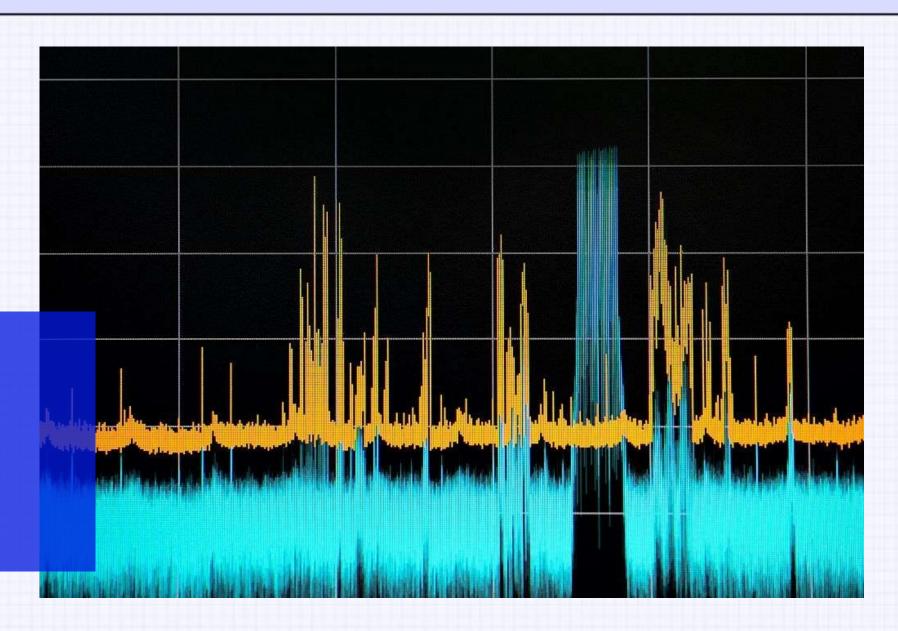
雷达方程与系统性能

雷达方程

雷达系统的发射信号强度、接收 信号强度以及目标反射信号强度 之间的关系可以用雷达方程表示。

系统性能

雷达系统的性能取决于发射信号 的功率、接收信号的灵敏度、目 标反射信号的强度和系统的噪声 系数等参数。


雷达信号的调制与波形设计

调制

调制是将信号加载到载波上的过程, 以便在传输时能够更有效地抵抗噪声 和干扰。

波形设计

波形设计是针对特定应用场景选择或设计合适波形的工程实践,以实现最佳的系统性能。

→ → — — •

雷达系统的基本架构

雷达系统的基本架构包 括发射机、接收机、天 线和信号处理部分。

01

接收机接收目标反射回来的信号,对其进行解调,得到目标的距离、速度等信息。

03

信号处理部分对接收到 的信号进行处理,提取 有用的目标信息。

05

发射机产生高频信号, 经过调制后通过天线向 空间发射。

02

天线的作用是定向发射 和接收电磁波。

04

雷达的主要组件及功能

雷达的主要组件包括发射机、 接收机、天线、显示器、控制 面板等。

01

发射机产生高频信号,经过调制后通过天线向空间发射。

02

接收机接收目标反射回来的信号,对其进行解调,得到目标的距离、速度等信息。

03

天线的作用是定向发射和接收电磁波。

04

显示器显示目标的距离、速度等信息。

05

控制面板用来设置雷达参数和操作雷达。

06

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/246200042103010115