分离过程模型的分类

简单分离单元模型 Separators

• 塔设备单元模型

简单分离单元模型包含五个模块:

- 1 两相闪蒸器 (Flash2)
- 2三相闪蒸器(Flash3)
- 3倾析器 (Decanter)
- 4组分分离器(Sep)
- 5两出口组分分离器(Sep2)

Flash2一两相闪蒸器

Flash2 模块执行给定热力 学条件下的汽-液平衡或汽-液-液平衡计算,输出一股汽相和 一股液相产物。用于模拟闪蒸 器、蒸发器、气液分离器等。

Flash2一两相闪蒸器

Flash2一模块连接

Flash2 模块的模型参数有 3 组:

1、闪蒸设定 (Flash Specifications)

- (1) 温度 (Temperature)
- (2) 压力 (Pressure)
- (3) 蒸气分率 (Vapor Fraction)
- (4) 热负荷 (Heat Duty)

从以上 4 个参数中选定 2 个。

🖕 Input 🔽 🔁 M	ETCBAR 🔽 🛨 🔶 << Ali 💽 >> 🛄 🏙 🧐 N>
Image: Setup Image: Components Image: Properties Image: Properties	Specifications Flash Options Entrainment Utility Flash specifications Temperature C Pressure Vapor fraction Heat duty Vapor-Liquid

2、有效相态(Valid Phase)
(1) 汽-液相(Vapor-Liquid)
(2) 汽-液-液相(Vapor-Liquid-Liquid)
(3) 汽-液-游离水相
(Vapor-Liquid-Free Water)
从以上 3个参数中选定 1 个。

🖕 İnput 🛛 🔽 🛅 MET	rcbar 🔽 🖛 🔿 << Ali 💽 >> 🛄 🏙 🤤 🕪
 Setup Components Properties Flowsheet Streams Utilities Blocks Blocks Blocks Blocks Blocks Block Components Blocks Bloc	 ◆Specifications Flash Options Entrainment Utility Flash specifications Temperature C Pressure bar Valid phases Appor-Liquid Vapor-Liquid Vapor-Liquid-Liquid Vapor-Liquid-FreeWater Vapor-Liquid-DirtyWater

3、液沫夹带

(Liquid Entrainment in Vapor Stream) 液相被带入汽相中的分率。

🖕 Input 🔽 🛍 🔣 ME	TCBAR 🔽 <table-cell-rows> 🔶 << Ali 🔽 >> 🛄 🏙 🥥 N> 🖄 🖉</table-cell-rows>
H Setup H Components H Properties H Plowsheet H Streams Utilities H Plocks H Plocks<	Specifications Flash Options Entrainment Utility Liquid entrainment in vapor stream Liquid entrainment: O Solid entrainment in vapor stream for each substream Substream Entrainment

Flash2 — 应用示例 (1)

流量为 1000 kg/hr、压力为 0.11 MPa、含乙醇 70 %w、水30 %w的饱 和蒸汽在蒸汽冷凝器中部分冷凝,冷 凝物流的汽/液比(摩尔)=1/3。求离 开冷凝器的汽、液两相的温度和组成。

Flash2 — 应用示例 (2)

流量为 1000 kg/hr、压力为 0.5 MPa 温度为 120℃、含乙醇 70 %w、 水30%w的物料绝热闪蒸到0.15 MPa。 求离开闪蒸器的汽、液两相的温度、 流量和组成。

Flash2 — 应用示例 (3)

流量为 1000 kg/hr、压力为 0.2 MPa 温度为20℃、含丙酮 30%w、水 70%w的物料进行部分蒸发回收丙酮, 求丙酮回收率为90%时的蒸发器温度 和热负荷以及汽、液两相的流量和组 成。

灵敏度分析——Sensitivity

在进行过程设计和分析时,常常需 要了解某些过程变量受其它过程变量 影响的敏感程度, ASPTEN Plus为此 提供了一个非常有用的分析工具:模 型分析工具(Model Analysis Tools)下 的灵敏度(Sensitivity)对象。

灵敏度分析——Sensitivity

🍼 Input 🛛 🔽 🔛 METCB/	AR 🔽 🖙 🔶 << Ali 🔤 >> 🛄 🕲 🧐 N> 🖄 🧷 🗙
Ports	Define Vary Tabulate Fortran Declarations Optional Cases
Custom Stream Resu	
• Reactions	Elevabort usriphic Definition
🗄 📆 Convergence	MACTON Mars Free Shares COUT Scheberg MIVED Correspond COUCO
🗐 🛅 Flowsheeting Options	TALTON Mass-Frac Stream=GUUT Substream=MIXED Component=L3H60
📄 Design Spec	*
Calculator	
Transfer	
Stream Library	
Balance	
Pres Relief	
Add Input	
- Model Analysis Tools	
Sensitivity	
S-1	
🚺 Input	
Optimization	Nou Edit Delete
Uonstraint	
Jata Fit	

灵敏度分析——步骤1-3

- 创建灵敏度对象时,按以下步骤操作: 1、从数据浏览器右侧的对象管理器(Object Manager)中点击新建(New)按钮;
- 2、在弹出对话框中为新对象指定一个辨识号 (ID);
- 3、在定义(Define)表单中点击新建(New)按 钮,创建灵敏度对象所需的变量;

😋 Sensitivity	E E E E E		<< All	✓ >> (蚀 🤤 N> 🐃	1X
	Ports 🔥 🔨	Object manage	r			
	Custom Stream Resu		Name		Status	
🗄 🖻 🛅 Reactio	ns	S-1		Results Availat	ble	
🗄 🔂 Converg	ence					
📄 🚞 Flowshe	eting Options					
📄 Des	sign Spec					
📄 🔂 Cal	lculator					
Tre 🔁	ansfer			reate new	TD	
Sta	ream Library		Ĕ	IGHIG HOU	1.0	
👘 🔂 👘 🔁	lance 🔤					
👘 Mea	asurement			Enter ID:	系统会自	3动给
Pre 🛅	es Relief		2			ч - <i>у</i> у - н
Add	d Input		- 1	5-2	山口万	
🖨 🔂 Model A	nelysis Tools					
🔄 📆 Se	nsitivity			ΟΚ	Cancel	
	S-1	4				
	🗸 Input					
📄 Opt	timization		_			
Cor	nstraint	New	Edit	Del	lete Copy	
🕒 🛅 Dat	ta Fit					
🕒 🛅 Cas	se Study	Rename	Hide	Rev	veal Paste	
Cos	st Estimation					
E Conf	iguration					

灵敏度分析——步骤4-5

- 4、在弹出对话框中输入新变量的变量名(Variable name);
- 5、在变量定义(Variable Definition)对话框中的 下拉式选择框中选择变量的类别(Category)、类 型(Type)、流股(Stream)或模块(Block)代号, 并指定具体变量(Variable)。

😋 S-2 🔽 🔁 🔀 METC	BAR 🔽 🗢 🔶 < 📶 🐷 >> 🛄 🏙 🧐 N 🖄 🖉 🗙
Ports 🔨 🔨	←Define ←Vary ←Tabulate Fortran Declarations Optional Cases
🔼 Custom Stream Resu	
🗄 🛅 Reactions	Flowsheet variable Definition
E Convergence	<u></u>
Flowsheeting Options	<u></u>
Design Spec	
Transfer	Create new variable
Stream Library	
Balance	Enter variable name:
Measurement	
Add Trput	4
- Model Analysis Tools	定义因变量
Sensitivity	OK Cancel
□	2
🚺 Input	
Kesults	
Input	New Edit Delete Copy
Results	
Dptimization	Move Up Move Down Paste
Constraint	

🝼 Input 🛛 🔽 🔢 METO	CBAR 🔽 🗢 🔶 < All 🔍 >>	© _ ● ● ●
Ports Ports Stream Results Custom Stream Resu Reactions Flowsheeting Options Design Spec Calculator Transfer Stream Library Balance	✓Define ✓Vary ✓Tabulate Fortran Flowsheet variable Definition YACTON Mass-Frac Stream=0 ★	✓ Yariable Definition Select a variable category and reference Variable name: ✓ YACTON Category O All O Blocks O Streams
Measurement Pres Relief Add Input Model Analysis Tools Sensitivity Sensitivity Sensitivity Sensitivity Sensitivity Sensitivity Determination Constraint Data Fit	5 确定因变量类型 New Edit	Model Utility Physical Property Parameters Reactions N≥ Close Access a component mass fraction.
tase Study Cost Estimation	Move Up Move Down	<u> </u>

灵敏度分析——步骤6-7

步骤6: 在变化(Vary)表单中输入调节变量 (Manupulated variable)的类型、名称和具体变 量(variable),并指定调节上、下限(Upper/Lower limits)和增量(Incr)。

步骤7: 在列表(Tabulate)表单中输入需要进行灵 敏度分析的列表变量(Tabulated variable)或组 合变量的表达式(Expression),以及列表时的列 序号(Column No.)。

🍼 Input 🛛 🔽 🔛 MET	BAR 💊	🗸 🔶 🔶 🔨	🔽 >> 🛄 (💁 🧐 N> 🖄 // ×
Ports 🔨 Stream Results	√ De	efine 🗸 Vary 🗸 Tabulate	Fortran Declara	tions Optional Cases
Custom Stream Resu	Cas	ses: 🔲 Variable no: 🚺	🔽 🗌 Disa	able variable
Convergence Klewsbeeting Options		fanipulated variable	Values for varied	d variable
Design Spec	Ty Bk	ype: Block-Var 💙	 ■ 0.05 	0.1 0.15
Calculator	Va	ariable: 🏟 ENTRN 🗸	Overall range	
Balance	Se	entence: PARAM	Lower:	
Measurement Pres Relief			#Point:	Incr:
Add Input		6	Report labels	
Sensitivity	t l	选择调节变量	Line 1:	Line 2:
S-1				
C Results				

—步骤

灵敏度分析——结果显示

从左侧的灵敏度对象下的结果 (Results)项目中查看结果。右侧的汇总 (Summary)表单中按照指定的列序号列表给 出调节变量和列表变量的对应值。

🔽 Results 🛛 🔽 🔛	
Ports 🔨 Stream Results	Summary Define Variable
Custom Stream Resu Reactions Convergence Flowsheeting Options Design Spec Calculator	Row / Status VARY 1 YACTON Case FLASH2 PARAM ENTRN
Transfer Stream Library Balance Measurement Pres Relief	▶ 1 OK 0.05 0.56830111 2 OK 0.1 0.54048548 3 OK 0.15 0.51551388 4 OK 0.2 0.49297133
Model Analysis Tools Model Analysis Tools Model Analysis Tools Sensitivity Sensitivity Model Analysis Tools Sensitivity Model Analysis Tools Model Analysis Model Analysis Tools Model Analysis Model Analysis Tools Model Analysis 5 OK 0 0.59947599	

变量关系图——Plot

在察看和分析灵敏度分析的列

表数据时,用图形描述的函数关系曲 线常常能让我们更直观和全面地了解 过程变量间的依赖趋势,ASPTEN Plus 为此提供了绘图(Plot)功能,可以将 列表数据中的任意两列绘制成X[~]Y曲线

Plot—作图步骤

在列表数据中选中一列,从窗口菜单 Plot项的下拉框里选择X轴变量(X-Axis Variable),再选中列表数据的另一列,从 窗口菜单Plot项的下拉框里选择Y轴变量 (Y-Axis Variable), 然后点击窗口菜单 Plot项的下拉框里的显示绘图 (Display Plot),即可得到曲线图。

Plot—作图步骤

🔁 Flashzexalpa - Mspen Flus Z	nn - asheunur - Teeustrinith 2-1 vesuits - na
<u> </u>	<u>Plot Library Window H</u> elp
D 🚅 🖬 🎒 🐧 🖻 🛍 🕺 👔	Plot Type 🕨 🔳 🔣
a a 🖬 🗒 , 16, 18	X-Axis Variable Ctrl+Alt+X
	Y-Axis Variable Ctrl+Alt+Y
	Parametric Variable Ctrl+Alt+Z
Results 🔽 🔛	Display Plot Ctrl+Alt+P
Ports	Add New Curve
Stream Results	
Custom Stream Resu	Plot <u>W</u> izard Ctrl+Alt+W ACTON
Eactions	PARAM
Flowsheeting Options	ENTRN
📄 Design Spec	
Calculator	
Transfer	1 OK 0.05 0.56830111
Stream Library	2 OK 0.1 0.54048548
Balance	3 OK 015 051551388
Pres Relief	
Add Input	4 UK 0.2 0.49297133
🗐 🔂 Model Analysis Tools	5 OK 0 0.59947599
🖃 🔂 Sensitivity	
⊡ 🔂 S−1	
🗹 Input	
Results	
II : Ontimization	

Plot—作图步骤

<u> </u>	<u>P</u> 1	ot <u>Library W</u> indow	<u>H</u> elp	<u> </u>
D 🖆 🖬 🎒 🖪 🖷 🛍 😽 🚺		Plot <u>T</u> ype		_ ▷ ዞ ■ 🖪
		<u>X</u> -Axis Variable	Ctrl+Alt+X	
		<u>Y</u> -Axis Variable	Ctrl+Alt+Y	
		Para <u>m</u> etric Variable	Ctrl+Alt+Z	-
🔽 Results 🔽 🔛		Display <u>P</u> lot	Ctrl+Alt+P	>> 🛄 🔩 🇐
Ports		Add <u>N</u> ew Curve		
Stream Results				- L
Custom Stream Resu		Plot <u>W</u> izard	Ctrl+Alt+W	PACTON
Heactions	\subseteq	Lase	FLASH2	
t Convergence			PARAM	
Flowsheeting Options			ENTRN	
Design Spec				
Calculator				
Transfer		1 OK	0.05	0.56830111
Stream Library			0.1	0 54048548
Balance			0.1	
Measurement		3 UK	0.15	0.51551388
Pres Relief		4 OK	0.2	0.49297133
Add Input		5 OK	0	0.59947599
Model Analysis Tools				
Sensitivity				
□ S-1				
- Input	=			
V Results				

Plot—结果显示

Flash2 — 应用示例 (4)

流量为 1000 kg/hr、压力为 0.2 MPa 温 度为 20℃、含丙酮 30%w、水 70 %w 的物料进行部分蒸发回收丙酮,蒸发 器热负荷为 250 kW。分析液沫夹带对 汽相丙酮分率的影响。

Flash3一三相闪蒸器

Flash3 模块执行给定热力 学条件下的汽-液-液平衡计算, 输出一股汽相和两股液相产物。 用于模拟闪蒸器、蒸发器、液-液分离器、汽-液-液分离器等。

Flash3—三相闪蒸器模块连接

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: <u>https://d.book118.com/277103126065010003</u>