2024 届湖南省怀化市中方县第一中学数学高一第二学期期末统

考模拟试题

考生请注意:

1. 答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷 上作任何标记。

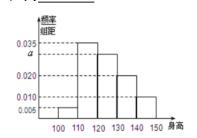
- 2. 第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
- 3. 考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

一、选择题 本大题共 10 小题,每小题 5 分,共 50 分。在每个小题给出的四个选项中, 恰有一项是符合题目要求的

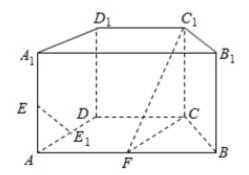
- 1. 直线 2x + (m+1)y + 4 = 0 与直线 mx + 3y 2 = 0 平行,则 m = ()
- A. 2 B. 2或-3 C. -3 D. -2或-3
- 2. 已知定义域 R 的奇函数 f(x) 的图像关于直线 x = 1 对称,且当 $0 \le x \le 1$ 时,

 $f(x) = x^3$, $\mathbb{Q} f\left(\frac{5}{2}\right) = ($

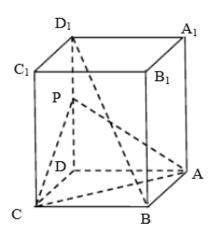
- **A.** $-\frac{27}{8}$ **B.** $\frac{27}{8}$ **C.** $\frac{1}{8}$ **D.** $-\frac{1}{8}$
- 3. 已知数列 2008, 2009, 1, -2008, -2009...这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前 2019 项之和 $S_{20/9}$ 等于()
- A. 1 B. 2010 C. 4018 D. 4017
- 4. 设 a, b 是异面直线,则以下四个命题: ①存在分别经过直线 a 和 b 的两个互相垂直的平面; ②存在分别经过直线 a 和 b 的两个平行平面; ③经过直线 a 有且只有一个平面垂直于直线 b; ④经过直线 a 有且只有一个平面平行于直线 b,其中正确的个数有
- A. 1 B. 2 C. 3 D. 4
- 5. 已知向量 $\overset{\mathbf{r}}{a} = (\sqrt{3}, -1)$, $\overset{\mathbf{l}}{b} = (\sqrt{3}, 1)$,则 $\overset{\mathbf{l}}{a}$ 在 $\overset{\mathbf{l}}{b}$ 方向上的投影为()
- A. $\frac{1}{5}$ B. $\frac{1}{4}$ C. $\frac{1}{3}$ D. 1
- 6. $\triangle ABC$ 的内角 A, B, C的对边分别为 a, b, c, 若 $\triangle ABC$ 的面积为

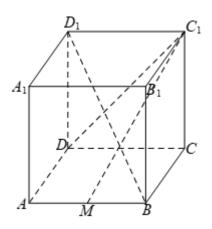

 $\frac{a^2 + b^2 - c^2}{4}$, MC =

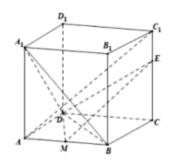
A. $\frac{\pi}{2}$ B. $\frac{\pi}{3}$ C. $\frac{\pi}{4}$ D. $\frac{\pi}{6}$


7.									
A. 2			B. $\sqrt{6}$	-1	C	$2\sqrt{6}-2$		D.	$2\sqrt{6}-3$
8.在	V <i>ABC</i> ♯	1 , a , b , c	分别为约	角 A, B,	C 的对边	.,若 a = 2,	b=1,	A =	$\frac{\pi}{3}$,则 $VABC$
解的	个数是()							
A. 0			B. 1		C	. 2		D.	不确定
9. 如]图是一个	正方体的	的平面展	开图,	在这个正	方体中			
	C	<i>M</i> :							
(1) B	$M /\!/ ED$								
② EF //CD									
③ CN 与 BM 为异面直线									
4 D	$M \perp BN$								
以上四个命题中,正确的序号是()									
A. (123		B. 24	Ð	C	. 34		D.	234
	123 己知 x ,)			<u>)</u>	C	. 34		D.	234
				5	C.	. 34		D.	234
10. i	已知 <i>x ,)</i>	√取值如	下表 :			. 34		D.	234
10. i	已知 <i>x</i> ,) 0 1.3	[/] 取值如 1 m	下表: 4 3m	5.6	7.4				②③④ m 的值(精确到
10. i	已知 <i>x</i> ,〕 0 1.3	[/] 取值如 1 m	下表: 4 3m	5.6	7.4				
10. it x y mm散/	已知 <i>x</i> ,) 0 1.3 点图分析可	V取値如 1 m 可知: <i>y</i>	下表: 4 3m	5.6	6 7.4 且求得回				m 的值(精确到
10. i x y 画散 0.1) A. 1	已知 <i>x</i> ,) 0 1.3 点图分析可	V取値如 1 m 可知: <i>y</i>	下表: 4 3m 与 x 线性 B. 1.6	5 5.6 ±相关,	6 7.4 且求得回 C.]归方程为 <i>ŷ</i> . 1. 7		则	m 的值(精确到
10. i x y 画散 0.1)为 A. 1 二、分	已知 <i>x</i> ,) 1.3 点图分析可 5() 55	ア取値如 1 m 可知: <i>y</i>	下表: 4 3m 与 x 线性 B. 1.6	5.6 生相关,	6 7.4 且求得回 C. 5 分, 其	归方程为 <i>ŷ</i> . 1.7 է 30 分。	y=x+1,	则 D.	m 的值(精确到
10. i x y 画散 0.1)为 A. 1 二、 11. *	已知 <i>x</i> ,) 1.3 点图分析可 50) 5 填空题: 2	V取値如 1 m 可知: <i>y</i> 本大題共 1 的正方	下表: 4 3m 与 x 线性 B. 1.6 6 小题,	5 5.6 挂相关, 每小题 (D ₁ 中,	6 7.4 且求得回 C. § 5 分,其 把 \(\Delta ACD\)	归方程为 <i>ŷ</i> . 1.7 է 30 分。	y=x+1,	则 D.	m 的值(精确到
10. i x y 画散が 0.1) 大 A. 1 二、対 11. ** ADC	已知 <i>x</i> , 〕 1.3 点图分析可见() 5.5 填空题: 2 将边长为1	V 取值如 1 m 可知: <i>y</i> 本大题 共 1 的 正 列	下表: 4 3m 与 x 线性 B. 1.6 6 小题, 形 ABC 三棱锥 L	5 5.6 挂相关, (D ₁ 中,	6 7.4 且求得回 C. 5 分,其 把 Δ <i>ACD</i>]归方程为ŷ . 1.7 k 30 分。 Ŋ 沿对角线 ́	·= x+1, 4C 折起3	则 D.	m 的值(精确到 1.8 4 <i>CD</i> ,使平面
10. i x y 画散 0.1) A. 1 二、 11. * ADC 12. ā	已知 <i>x</i> , 〕 1.3 点图分析可 5() 5 填空题: 2 将边长为 □	「取値如」 1 m 対 大 的 正 列 共 方 BC, 列 よ	下表: 4 3m 与 x 线性 B. 1.6 云 6 小题, 下形 ABC 三棱锥 L 4=120°,	5 5.6 挂相关, D_1 中, D_1 中, D_2 0 — ABC 1	6 7.4 且求得回 C. 5 分,共 把 Δ <i>ACD</i> C 的体积;	. 1.7 t 30 分。 ⁰ . 沿对角线 ² 为	n = x + 1, 4C 折起3	则 D . S=_	m 的值(精确到 1.8 4 <i>CD</i> ,使平面
10. i x y 画散 0.1) 次 A. 1 二、対 11. ネ ADC 12. 行 13. 元	已知 <i>x</i> , 〕 1.3 点图分析可以。5 填边长面。7 在△ABC可能 在△ABC可能 在△ABC可能 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在	v 取	下表: 4 3m 与 x 线性 B. 1.6 6 小题, 下形 ABC 三棱锥 L 4=120°,	5 5.6 挂相关, 分 - ABC , AB=5 为 θ , 则	6 7.4 且求得回 C. 5 分, 步 把 ΔACD C 的体积。 5, BC=2	」归方程为ŷ . 1.7 Է 30 分。 ② 沿对角线 ² 为 7,则△ <i>ABC</i>	· = x + 1 , 4C 折起3 的"外和	则 D. S=_ ₹",	m 的值(精确到 1.8 4CD,使平面 ——· 其长度为

正三棱锥的底面边长为 2,侧面均为直角三角形,则此三棱锥的体积为_____。


15. 从某小学随机抽取 **100** 名同学,将他们的身高(单位: 厘米)数据绘制成频率分布 直方图(如图).若要从身高[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法抽取 **18** 人参加一项活动,则从身高在[140,150]内的学生中抽取的人数 应为______.


- 16. 圆 $x^2 + y^2 = 4$ 上的点到直线 4x+3y-12=0 的距离的最小值是
- 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
- 17. 如图,在直四棱柱 $ABCD-A_1B_1C_1D_1$ 中,底面 ABCD 为等腰梯形, AB//CD , AB=4 , $AA_1=2$, BC=CD=2 , E 、 F 、 E_1 分别是 AA_1 、 AB 、 AD 的中点.


- (1) 证明:直线 *EE*₁// 平面 *FCC*₁;
- (2) 求直线 BF 与面 $FC_{i}C$ 所成角的大小;
- (3) 求二面角 $B FC_1 C$ 的平面角的余弦值.
- 18. 如图,在长方体 $ABCD A_1B_1C_1D_1$ 中, AB = AD = 1, $AA_1 = 2$,点 $P 为 DD_1$ 的中点.

- (1) 求证:直线 BD_1 // 平面 PAC;
- (2) 求证: 平面 $PAC \perp$ 平面 BDD_1 ;
- (3) 求直线 PB_1 与平面 PAC 的夹角.
- 19. 在正方体 *ABCD A*₁*B*₁*C*₁*D*₁ 中.

- (1) 求证: $C_1D \perp BD_1$;
- (2) M 是 AB 中点时,求直线 C_1M 与面 BCD_1A_1 所成角.
- 20. 如图,在正方体 $ABCD A_1B_1C_1D_1$ 中, M 是 AB 的中点, E 在 CC_1 上,且 $CE = 2C_1E$.

- (1)求证: $AC_1 \perp$ 平面 A_1BD ;
- (2)在线段 DD_1 上存在一点 P , $DP = \lambda D_1 P$,若 $PB_1 /\!/$ 平面 DME ,求实数 λ 的值.

- 21. 已知直线 l_1 经过点 P(1,2) , 斜率为 1.
- (1) 求直线 / 的方程;
- (2) 若直线 l_1 与直线 l_2 : y = 2x + b 的交点在第二象限,求b 的取值范围.

参考答案

一、选择题 本大题共 10 小题,每小题 5 分,共 50 分。在每个小题给出的四个选项中, 恰有一项是符合题目要求的

1, B

【解题分析】

两直线平行, 斜率相等; 按m+1=0, m=0和 $m+1\neq 0$, $m\neq 0$ 三类求解.

【题目详解】

当m+1=0即m=-1时,

两直线为2x+4=0, -x+3y-2=0,

两直线不平行,不符合题意;

当m=0时,

两直线为2x+y+4=0 , 3y-2=0

两直线不平行,不符合题意:

当 $m+1 \neq 0, m \neq 0$ 即 $m \neq -1, m \neq 0$ 时,

直线
$$2x + (m+1)y + 4 = 0$$
 的斜率为 $-\frac{2}{m+1}$,

直线
$$mx + 3y - 2 = 0$$
 的斜率为 $-\frac{m}{3}$,

因为两直线平行,所以
$$-\frac{2}{m+1}=-\frac{m}{3}$$
,

解得m = 2或-3,

故选 B.

【题目点拨】

本题考查直线平行的斜率关系,注意斜率不存在和斜率为零的情况.

【解题分析】

根据函数 f(x) 的图像关于直线 x=1 对称可得 f(x)=f(2-x) ,再结合奇函数的性质即可得出答案.

【题目详解】

解::函数 f(x) 的图像关于直线 x=1 对称,

$$\therefore f(1+x) = f(1-x),$$

$$\therefore f(x) = f(2-x),$$

::奇函数 f(x)满足,当 $0 \le x \le 1$ 时, $f(x) = x^3$,

$$\therefore f\left(\frac{5}{2}\right) = f\left(2 - \frac{5}{2}\right) = f\left(-\frac{1}{2}\right) = -f\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^3 = -\frac{1}{8},$$

故选: D.

【题目点拨】

本题主要考查函数的奇偶性与对称性的综合应用,属于基础题.

3, C

【解题分析】

计算数列的前几项,观察数列是一个周期为6的数列,计算得到答案.

【题目详解】

从第二项起,每一项都等于它的前后两项之和

计算数列前几项得:

2008, 2009, 1, -2008, -2009, -1,2008,2009,1, -2008...

观察知:数列是一个周期为6的数列

每个周期和为0

$$S_{2019} = a_1 + a_2 + a_3 = 4018$$

故答案为 C

【题目点拨】

本题考查了数列的前 N 项和,观察数列的周期是解题的关键.

4, C

【解题分析】

对于①:可以在两个互相垂直的平面中,分别画一条直线,当这两条直线异面时,可判断①正确

对于②:可在两个平行平面中,分别画一条直线,当这两条直线异面时,可判断②正确

对于③: 当这两条直线不是异面垂直时,不存在这样的平面满足题意,可判断③错误对于④: 假设过直线 a 有两个平面 α 、 β 与直线 b 平行,则面 α 、 β 相交于直线 a,过直线 b 做一平面 γ 与面 α 、 β 相交于两条直线 m、n,则直线 m、n 相交于一点,且都与直线 b 平行,这与"过直线外一点有且只有一条直线与已知直线平行"矛盾,所以假设不成立,所以④正确

故选: C.

5, D

【解题分析】

直接利用向量的数量积和向量的投影的定义,即可求解,得到答案.

【题目详解】

由题意,向量 $\overset{\mathsf{r}}{a} = (\sqrt{3}, -1)$, $\overset{\mathsf{l}}{b} = (\sqrt{3}, 1)$,

则
$$a$$
 在 b 方向上的投影为: $\frac{a \cdot b}{|b|} = \frac{3-1}{2} = 1$.

故选 D.

【题目点拨】

本题主要考查了平面向量的数量积的应用,其中解答中熟记向量的数量积的运算公式, 准确计算是解答的关键, 着重考查了推理与运算能力, 属于基础题.

6, C

【解题分析】

分析: 利用面积公式 $S_{VABC} = \frac{1}{2} absinC$ 和余弦定理 $a^2 + b^2 - c^2 = 2abcosC$ 进行计算可得。

详解: 由题可知
$$S_{VABC} = \frac{1}{2}absinC = \frac{a^2 + b^2 - c^2}{4}$$

所以
$$a^2 + b^2 - c^2 = 2$$
absinC

由余弦定理
$$a^2 + b^2 - c^2 = 2abcosC$$

所以 sinC = cosC

 $QC \in (0,\pi)$

$$\therefore C = \frac{\pi}{4}$$

故选 C.

点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。

7, D

【解题分析】

根据所给等量关系,用 a 表示出 b 可得 $b = \frac{4-2a}{a+1}$.代入 a+b 中,构造基本不等式即可求得 a+b 的最小值.

【题目详解】

因为
$$a,b \in R^+, ab + 2a + b = 4$$

所以变形可得
$$b = \frac{4-2a}{a+1}$$

所以
$$a+b=a+\frac{4-2a}{a+1}$$

$$=a-\frac{2(a+1)-6}{a+1}$$

$$=a+\frac{6}{a+1}-2$$

$$= a + 1 + \frac{6}{a+1} - 3$$

由基本不等式可得
$$a+1+\frac{6}{a+1}-3 \ge 2\sqrt{(a+1)\times\frac{6}{a+1}}-3 = 2\sqrt{6}-3$$

当且仅当
$$a+1=\frac{6}{a+1}$$
时取等号,解得 $a=\sqrt{6}-1,b=\sqrt{6}-2$

所以a+b的最小值为 $2\sqrt{6}-3$

故选:D

【题目点拨】

本题考查了基本不等式求最值的应用,注意构造合适的基本不等式形式,属于中档题.

8, B

【解题分析】

由题得
$$\sin B = \frac{\sqrt{3}}{4} < \frac{\sqrt{3}}{2}$$
,即得 B

【题目详解】

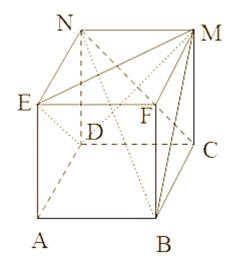
由正弦定理得
$$\frac{2}{\frac{\sqrt{3}}{2}} = \frac{1}{\sin B}$$
, $\therefore \sin B = \frac{\sqrt{3}}{4} < \frac{\sqrt{3}}{2}$, $\therefore B < A = \frac{\pi}{3}$,

所以 B 只有一解, 所以三角形只有一解.

故选:B

【题目点拨】

本题主要考查正弦定理判定三角形的个数,意在考查学生对这些知识的理解掌握水平,属于基础题.


9、D

【解题分析】

作出直观图,根据正方体的结构特征进行判断.

【题目详解】

作出正方体得到直观图如图所示:

由直观图可知, BM 与 DE 为互相垂直的异面直线,故①不正确;

EF / /AB / /CD,故②正确;

CN 与 BM 为异面直线,故(3)正确;

由正方体性质可知 $BN \perp$ 平面 DEM ,故 $BN \perp DM$,故 **4**)正确.

故选:D

【题目点拨】

本题考查了正方体的结构特征,直线,平面的平行于垂直,属于基础题.

10, C

【解题分析】

根据表格中的数据,求得样本中心为 $(\frac{16}{5}, \frac{17.3 + m}{5})$,代入回归直线方程,即可求解.

【题目详解】

由题意,根据表格中的数据,可得
$$x = \frac{0+1+4+5+6}{5} = \frac{16}{5}$$
,
$$y = \frac{1.3+m+3m+5.6+7.4}{5} = \frac{14.3+4m}{5}$$
,即样本中心为 $(\frac{16}{5}, \frac{17.3+m}{5})$,代入回归直线方程 $\hat{y} = x+1$,即 $\frac{14.3+4m}{5} = \frac{16}{5}+1$,解得 $m=1.7$,故选 C.

【题目点拨】

本题主要考查了回归直线方程的应用,其中解答中熟记回归直线方程的基本特征是解答的关键,着重考查了推理与运算能力,属于基础题.

二、填空题: 本大题共6小题,每小题5分,共30分。

11,
$$\frac{\sqrt{2}}{12}$$

【解题分析】

由面面垂直的性质定理可得 $DO \perp$ 面ABC,再结合三棱锥的体积的求法求解即可.

【题目详解】

解: 取AC中点O,连接DO,

因为四边形 ABCD 为边长为 1 的正方形,

则
$$DA = DC$$
,即 $DO \perp AC$,

又平面 ADC ⊥平面 ABC,

由面面垂直的性质定理可得: $DO \perp m ABC$,

$$\mathbb{E}\left|DO\right| = \frac{\sqrt{2}}{2} \left|AB\right| = \frac{\sqrt{2}}{2},$$

则
$$V_{D-ABC} = \frac{1}{3}S_{\Delta ABC}|DO| = \frac{1}{3} \times \frac{1}{2} \times 1^2 \times \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{12}$$

故答案为:
$$\frac{\sqrt{2}}{12}$$
.

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问:

https://d.book118.com/278113034006006052