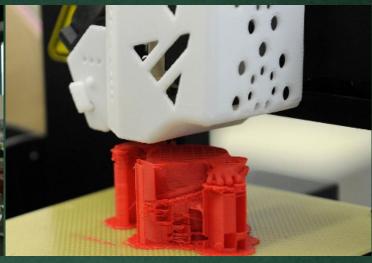
第16课 3D打印技术体验与创意设计


- 3D打印技术概述
- 3D打印原理及设备介绍
- 创意设计基础与实践准备
- · 动手实践:个性化3D打印作品制作
- 挑战与问题解决策略分享
- 课堂总结与未来展望

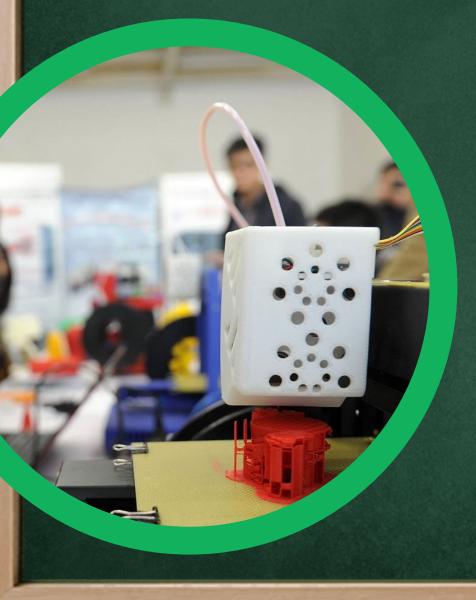
01 3D打印技术概述

什么是3D打印技术

3D打印定义

3D打印技术,即三维打印技术,是一种通过逐层堆积材料来制造三维实体的技术。

工作原理


3D打印机根据设计好的三维模型数据,将材料逐层堆积,直至构建出完整的物体。

技术特点

3D打印技术具有制造复杂形状 、节省材料、个性化定制等优 势。

3D打印技术发展历程

早期研究阶段

01

02

03

20世纪末至21世纪初,3D打印技术处于研究和实验阶段,主要应用于科研领域。

技术成熟与商业化

随着技术的不断进步, 3D打印技术逐渐成熟, 并开始商业化应用, 涉及工业、医疗、建筑等多个领域。

创新发展

近年来, 3D打印技术在材料、打印速度、精度等方面取得重要 突破, 为创意设计提供了更广阔的空间。

3D打印技术应用领域

工业制造

3D打印技术在工业制造领域的应用日益 广泛,可用于原型制作、模具制造、零部件生产等环节。

创意设计

设计师可利用3D打印技术将创意转化为 实体作品,快速验证设计想法,拓展设计 思路。

医疗健康

在医疗健康领域,3D打印技术可用于制作人体器官模型、定制医疗器械以及实现个性化治疗等。

教育培训

3D打印技术为教育培训领域带来革命性变革,通过打印实物模型帮助学生更好地理解抽象概念,提升学习效果。

建筑设计

建筑师可利用3D打印技术制作建筑模型, 更直观地展现设计理念,同时探索建筑结构的创新性。 02

3D打印原理及设备介绍

3D打印工作原理简述

1

逐层堆积

3D打印技术采用逐层堆积的方式,将材料按照 预设的模型一层一层地堆积起来,最终形成完整 的三维实体。

2

数据驱动

3D打印过程依赖于三维模型数据,通过将这些数据转换为打印机可识别的指令,从而精确控制打印的每一层。

材料多样

3

3D打印技术可使用多种材料,如塑料、金属、陶瓷等,根据打印需求和材料特性进行选择。

常见3D打印设备类型及特点

熔融沉积型(FDM)

通过将热塑性材料加热熔化后挤出,按照预设路径逐层堆积成型。设备成本较低,适合个人和小型企业使用。

立体光刻型(SLA)

使用光敏树脂作为材料,通过激光束逐层固化树脂来形成实体。打印精度较高,适用于制作细节要求较高的模型。

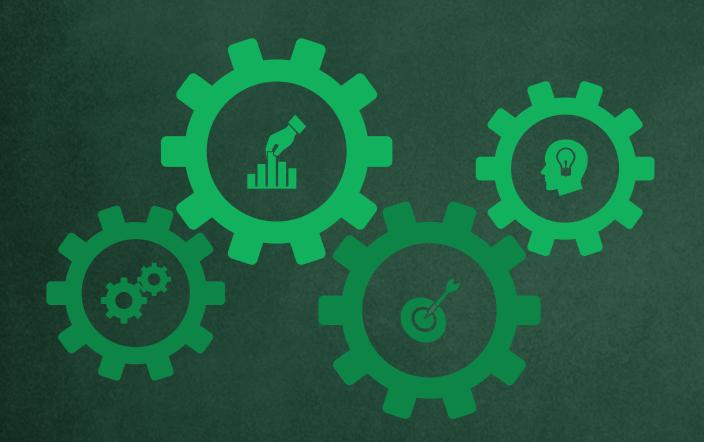
选择性激光烧结型(SLS)

使用粉末状材料,通过激光束选择性地烧结粉末颗粒来形成实体。适用于金属、陶瓷等材料的打印,具有较高的强度和耐用性。

设备选购与使用注意事项

选购考虑因素

使用安全事项

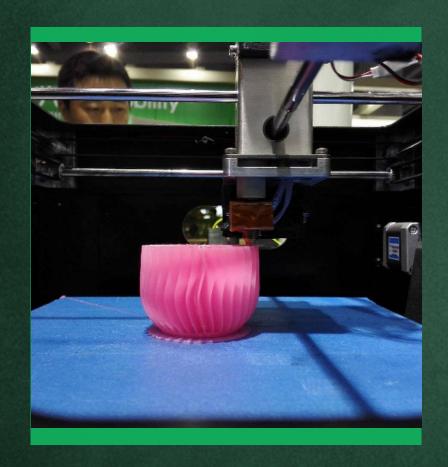

维护保养要点

在选择3D打印设备时,需考虑 打印需求、预算、设备性能 (如打印精度、速度、材料兼 容性)以及售后服务等因素。 操作3D打印设备时,需遵守安全规范,如确保设备稳定放置、避免触摸高温部件、定期检查设备状态等。

为了延长设备使用寿命和保持 打印质量,需定期对设备进行 维护保养,如清理打印头、更 换耗材、检查传动部件等。同 时,应关注设备制造商提供的 保养建议和技术支持。 03

创意设计基础与实践准备

创意设计概念及思维方式培养


创意设计定义

创意设计是指通过创造性思维和独特的设计手法,将 想象转化为具有实用性和美感的作品的过程。

思维方式培养

培养学生发散性思维,鼓励多角度、多层次地思考问题;激发求异思维,追求新颖、独特的创意点;培养批判性思维,对设计方案进行客观分析和评价。

设计软件操作技能培训

软件选择

根据教学需求和学生实际情况,选择合适的3D设计软件,如 Tinkercad、Fusion 360等。

基础操作培训

教授学生软件的基本操作,包括界面认识、工具使用、模型构建等。

高级技巧传授

针对特定设计需求,传授学生一些高级操作技巧,如复杂模型建模、 材质贴图等。 以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/285202204240011221