

Python机器学习从 入门到实践

> 2024-01-11

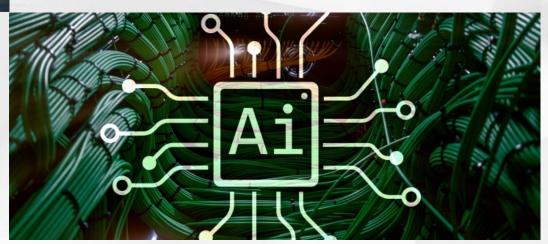
目录

- ・机器学习概述
- · Python机器学习基础
- ・监督学习算法
- ・无监督学习算法
- ・神经网络与深度学习
- ·Python机器学习实践案例

机器学习概述

机器学习是一种人工智能(AI)技术,它使计算机系统能够从数据中学习并改进其性能,而无需进行明确的编程。

机器学习通过训练模型来识别数据中的模式,并使用这些模式来对新数据进行预测或分类。



监督学习

训练数据带有标签, 模型通过学习输入与 输出之间的映射关系 来进行预测。

无监督学习

训练数据没有标签, 模型通过发现数据中 的内在结构和模式来 进行学习。

半监督学习

部分训练数据带有标签,模型利用有标签和无标签数据进行学习。

强化学习

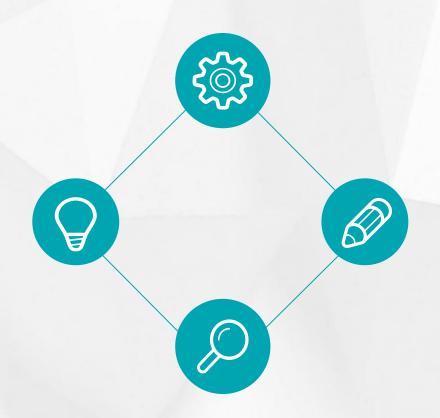
模型通过与环境的交 互来学习,目标是最 大化累积奖励。

1950年代

机器学习的概念初步形成,基于神经 网络的感知机模型被提出。

1990年代

支持向量机(SVM)等核方法成为研究热点,机器学习在文本分类、图像识别等领域取得显著成果。



1980年代

决策树、K近邻等算法相继出现,机器学习开始应用于实际问题。

2000年代至今

深度学习崛起,神经网络模型在图像、语音、自然语言处理等领域取得突破性进展,机器学习应用广泛扩展。

Python机器学习基础

Python语言在机器学习中的应用

简洁易懂的语法

Python语言采用简洁易懂的语法,使得机器学习算法的实现更加直观和易于理解。

丰富的库支持

Python拥有大量的机器学习库,如scikit-learn、TensorFlow、Keras等,这些库提供了丰富的算法和工具,方便用户快速构建和训练机器学习模型。

强大的数据处理能力

Python具备强大的数据处理能力,可以轻松地处理各种类型的数据,包括文本、图像、音频等,为机器学习提供了良好的数据基础。

Python机器学习常用库

scikit-learn

scikit-learn是一个功能强大的机器学习库,提供了各种分类、回归、聚类等算法,以及数据预处理、模型评估等工具。

Keras

Keras是一个基于TensorFlow的高级深度学习框架,提供简洁易懂的API,方便用户快速构建和训练深度学习模型。

TensorFlow

TensorFlow是一个开源的深度学习框架,支持各种深度学习模型的构建和训练,包括卷积神经网络、循环神经网络等。

PyTorch

PyTorch是另一个流行的深度学习框架,提供动态计算图和GPU加速等功能,适用于各种复杂的深度学习应用。

Python机器学习数据处理

数据清洗

Python提供了pandas等库进行数据清洗,包括缺失值处理、异常值处理、重复值处理等。

特征工程

特征工程是机器学习中非常重要的一步,Python提供了各种特征提取、特征选择、特征转换等方法,如文本特征提取、图像特征提取等。

数据标准化/归一化

数据标准化/归一化是机器学习中常用的数据预处理方法,可以消除不同特征之间的量纲差异,提高模型的训练效果。Python提供了各种标准化/归一化方法,如Min-Max归一化、Z-score标准化等。

监督学习算法

01 线性回归模型

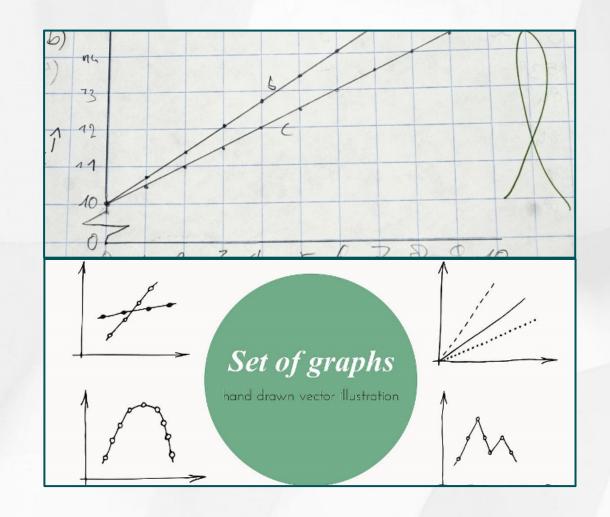
通过最小化预测值与真实值之间的均方误差,学习得到最优的线性模型参数。

02 特征选择

选择与输出变量相关性强、且彼此之间相关性弱的特征,以提高模型的预测性能。

03 正则化

通过引入正则化项,防止模型过拟合,提高模型的泛化能力。



逻辑回归模型

使用sigmoid函数将线性模型的输出映射到[0,1] 区间,表示样本属于正类的概率。

02

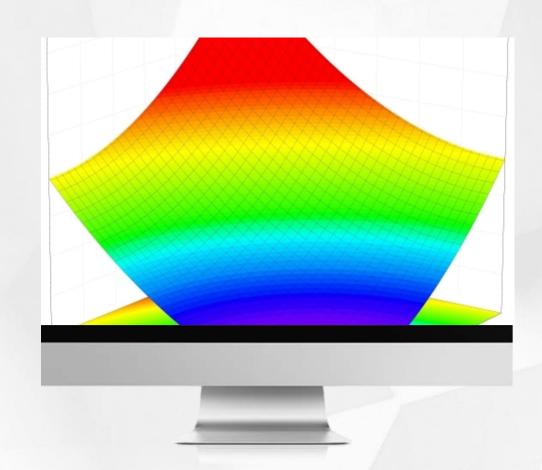
损失函数

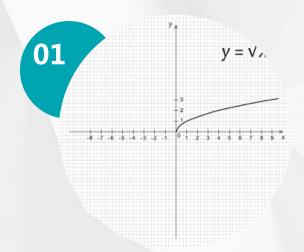
采用交叉熵损失函数,衡量模型预测概率分布与真实概率分布之间的差异。

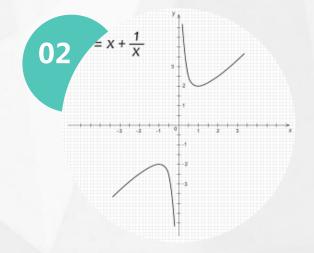
03

多分类问题

通过构建多个二分类逻辑回归模型,或使用softmax函数将输出映射到多个类别上,实现多分类问题的求解。







支持向量机模型

核函数

通过最大化间隔,寻找最 优超平面将不同类别的样 本分开。 引入核函数,将样本映射 到高维空间,使得原本线 性不可分的问题变得线性 可分。

允许一些样本点不满足约束条件,以缓解过拟合问题。

决策树与随机森林

决策树

通过递归地选择最优特征 进行划分,构建一棵树状 结构,实现对样本的分类 或回归。

特征选择

采用信息增益、增益率、 基尼指数等指标评估特征 的重要性,选择最优特征 进行划分。

剪枝

通过去除一些子树或叶节点,降低决策树的复杂度, 防止过拟合。

随机森林

构建多个决策树,对它们的预测结果进行集成,以 提高模型的预测精度和稳定性。 以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/295341240233011222