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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 10768

The Republic of Yemen is enduring the world’s most severe 
protracted humanitarian crisis, compounded by conflict, 
economic collapse, and natural disasters. Current food inse-
curity assessments rely on expert evaluation of evidence with 
limited temporal frequency and foresight. This paper intro-
duces a data-driven methodology for the early detection and 
diagnosis of food security emergencies. The approach opti-
mizes for simplicity and transparency, and pairs quantitative 
indicators with data-driven optimal thresholds to generate 
early warnings of impending food security emergencies. 

Historical validation demonstrates that warnings can be 
reliably issued before sharp deterioration in food security 
occurs, using only a few critical indicators that capture 
inflation, conflict, and agricultural productivity shocks. 
These indicators signal deterioration most accurately at 
five months of lead time. The paper concludes that simple 
data-driven approaches show a strong capability to generate 
reliable food security warnings in Yemen, highlighting their 
potential to complement existing assessments and enhance 
lead time for effective intervention.

This paper is a product of the Poverty and Equity Global Practice. It is part of a larger effort by the World Bank to provide 
open access to its research and make a contribution to development policy discussions around the world. Policy Research 
Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The authors may be contacted at spenson@
worldbank.org and bandree@worldbank.org. 
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1 Introduction 
Despite considerable humanitarian assistance, the food crisis in the Republic of Yemen remains one of 
the world's most dire humanitarian catastrophes in the world. Yemen currently is home to the 5th 
largest population in the world experiencing crisis levels of acute food insecurity (FSIN and Global 
Network Against Food Crises, 2023). The latest country-wide multi-partner Integrated food security 
Phase Classi�ication (IPC) assessment of end of 2022 (IPC, 2022) estimated that 17 million people were 
in a food crisis, or worse situation, meaning that the population was unable to meet minimum dietary 
needs without resorting to irreversible coping strategies. 

Food security can be assessed across four dimensions requiring that food is available, that individuals 
can access this food, that food supply and access are stable, and that food provides adequate nutrition 
(Food and Agriculture Organization (FAO), 2008). Acute food insecurity arises when these dimensions 
are severely impaired. The food security challenges faced by Yemen are signi�icant, and the number of 
interrelated factors that can worsen acute food insecurity are many. Humanitarian disasters stem from 
intricate connections among con�lict, poverty, extreme weather, climate, and food price shocks 
(Misselhorn, 2005; Headey, 2011; Singh, 2012; D’Souza and Jolliffe, 2013), exacerbated by enduring 
structural factors (Maxwell and Fitzpatrick, 2012), and ultimately lead to high levels of acute 
malnutrition and mortality in vulnerable populations.  

The prevalence of acute severe malnutrition in Yemen has impacted the population, leading to increased 
vulnerability to health issues and diseases, such as cholera, stunting, wasting, and a variety of both 
physical and mental health consequences. Prior to the 2015 escalation of con�lict, Yemen already had 
one of the world’s highest malnutrition levels. The situation has been aggravated by escalating con�lict 
and economic decline, and recently the overwhelming impact of the COVID-19 pandemic and the war in 
Ukraine. During this time, many aid projects, including emergency food assistance, WASH services, and 
malnutrition treatment programs that are highly dependent on continued funding from donor partners 
(UNICEF, 2020), have been disrupted periodically by funding shortfalls. 

Malnutrition has particularly severe impacts on children, leading to long-term declines in cognitive 
development and potentially enduring health issues. The assessment of Black et al. (2013) on maternal 
and child undernutrition in low-income and middle-income countries revealed that nearly half of child 
deaths worldwide were linked to undernutrition. In 2021-2022, Gatti, et al. (2023) estimated that severe 
food price shocks in the MENA region resulted in hundreds of thousands of children facing long-term 
consequences, including stunted growth. Additionally, beyond immediate health consequences and loss 
of life, severe food crises in�lict lasting harm on the children of affected families, resulting in 
intergenerational adverse health and educational outcomes (Galler & Barrett, 2001; Veenendaal, et al., 
2013; Galler & Rabinowitz, 2014; Asfaw, 2016). 

Recognizing these costs, the international community has responded to Yemen’s food crisis with 
enormous humanitarian aid. According to World Bank data on aid and of�icial development assistance, 
Yemen received 8 billion dollars in of�icial development assistance alone in 2018. At the $1.90 dollar 
poverty line, this was suf�icient to pay for almost 90% of the annual expenses of the population FAO 
estimates to have been malnourished that year. In a comprehensive review of 2020 aid programs, 
Ghorpade and Ammar (2021) estimated that the combined reach of humanitarian and development 
programs was enough to cover, and in fact exceed, the entire Yemeni population. Alongside aid, there has 
recently been a growing emphasis on prevention and targeted intervention, as it is often more cost-
effective and sustainable to prevent humanitarian catastrophes rather than solely responding to them 
(Meerkatt, Kolo, & Renson, 2015; Mechler, 2016). 

Moving from reactive to pro-active aid requires investment in close monitoring to enable early detection 
and rapid response when new food security risks emerge (Maxwell & Hailey, 2020). Different early 
warning and food security information systems already exist to support and inform humanitarian and 
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development programming, including FEWS NET and the Integrated Food Security Phase Classi�ication 
(IPC). To date, IPC analyses have provided the primary and common means for tracking food insecurity 
risks. These major analyses, however, require signi�icant resources and time to conduct and are typically 
updated on an annual or at best on a semi-annual basis. Large-scale household surveys are infrequent 
due to access constraints, security issues, and lack of funding. For instance, the World Bank has not 
carried out a Living Standards Measurement Study and poverty assessment in Yemen since the war 
broke out in 2015. 

While comprehensive analyses are vital for informing programming, targeted humanitarian 
interventions require more frequent monitoring to mitigate potentially fast-moving developments. The 
need to enhance the current food security monitoring processes in Yemen is well documented and 
highlighted for instance by the IPC Famine Review (Maxwell, et al., 2022). To contribute to an improved 
capacity to predict when, where and how food insecurity escalates, this paper explores data-driven 
approaches for the early detection and diagnosis of food insecurity emergencies in Yemen. The approach 
optimizes for simplicity and transparency, and pairs quantitative indicators with data-driven optimal 
thresholds to generate early warnings of impending food insecurity emergencies.  

Previous data-driven approaches to forecast impending emergencies have been pioneered for instance 
by Mellor (1986), who emphasized economic vulnerabilities, crop failures, and price signals as key 
indicators of famine. This provides a modeling template that remains in place today. Further insights 
into price signals and economic deterioration speci�ically were provided by Seaman and Holt (1980), 
Cutler (1984) and (Khan, 1994) in the context of the Ethiopian famine of 1972-1974 and the 1984-1985 
famine in Niger, and by Andree (2022) who forecasts severe food insecurity in 191 countries based on 
macro-economic data. More recently, machine learning and time series methods have been employed 
for prediction at a granular level, as demonstrated by Andrée et al., who predicted local future food crisis 
using data on food prices, agricultural productivity shocks, and con�lict. Using the same data, Wang, et 
al. model transitions across lower and higher food insecurity phases. Related approaches have since 
been developed to provide machine-learning driven high-frequency monitoring of food security (Martini 
et al., 2022).  

The proposed methodology in this paper builds upon the existing food security modeling literature, with 
a speci�ic focus on parsimony, simplicity, and transparency. The proposed approach is a response to 
recent calls emphasizing the importance of simplicity and transparency in food security modeling (e.g., 
Baylis et al., 2021; Zhou et al., 2022; McBride et al., 2022). The approach is also informed by the 
indicator-driven alert system developed by Somalia’s Food Security and Nutrition Analysis Unit 
(FSNAU), which provides automated monitoring capabilities. The proposed methodology extends this 
system by optimizing alert thresholds at different levels of tolerance for false alerts, benchmarking 
different indicators, and selecting optimal approaches based on historical validation. This results in a 
lightweight but effective food security monitoring system that can cater to different targeting strategies 
simultaneously and supplement existing food insecurity assessments. 

Historical validation of the warnings demonstrates that food insecurity emergencies can be reliably 
detected before they occur, using only a few critical indicators to capture in�lation, con�lict, and 
agricultural productivity shocks. The paper concludes that the simple data-driven approaches show a 
strong capability to detect impending food security emergencies, highlighting their potential to 
complement existing assessments and enhance lead time for effective, timely, and proactive response. 

The paper is structured as follows. Section 2 introduces the data, section 3 develops a framework for the 
validation and calibration of indicators and thresholds, paying particular focus to balancing false 
positives and false negatives. Section 4 presents key results, and section 5 concludes. Additional results 
are found in the supplementary appendices. 
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2 Data 
2.1 Target variable: Emergency outbreaks 
This paper aims to predict transitions into critical states of food insecurity with suf�icient lead time for 
action, solely using readily observable indicators. The strategy is to pair the indicators with optimized 
thresholds to issue reliable warnings before major escalations in food insecurity occur. This work 
particularly draws on the World Bank's research on Predicting Food Crises (Andrée et al., 2020). 

Of�icial IPC data is only available from 2018 to the present. Since the objective is to calibrate indicators 
to a historical time series of food insecurity situations, historical IPC-compatible data was gathered from 
FEWS NET covering periodic assessments conducted in 333 districts in Yemen from October 2014 to 
July 2023. The data quanti�ies food insecurity using the IPC-compatible analytical framework 
categorizing the severity of food insecurity and recommending risk mitigation policies (Hillbruner and 
Moloney (2012) provide a review of the process). The IPC scale distinguishes �ive phases of food 
insecurity: (1) minimal/none, (2) stressed, (3) crisis, (4) emergency, and (5) famine/catastrophe. When 
food insecurity reaches crisis levels, the IPC scale advises a signi�icant policy shift. Speci�ically, for 
conditions of stress (2) and below, the focus is on risk management, while at crisis level (IPC Phase 3) 
and above, it shifts to urgent action to mitigate outcomes (IPC, 2021).  

FEWS NET IPC data are reported at a sub-national livelihood zone level. To obtain a consistent time 
series, the data were mapped to a comparable district level using a spatial overlay and population 
density was calculated using Meta 2018 high resolution population density maps (Meta, 2024). Table 1 
shows summary statistics. 

Table 1: Summary statistics of FEWS NET IPC classifications from 2014 to 2023.  

Frequency of FEWS NET IPC observations: 8,646. Number of districts: 333. 

FEWS NET IPC phase adjusted for aid Frequency (n=8,646) 
1 0 
2 678 
3 4213 
4 3751 
5 4 

FEWS NET IPC phase transition adjusted for aid Frequency (n=8,464) 
1 to 2 0 
2 to 3 194 
3 to 4 444 
4 to 5 4 

% of time each district spent in IPC Phase 3+ Frequency (n=333) 
0% - 20% 9 

20% - 40% 0 
40% - 60% 0 
60% - 80% 30 

80% - 100% 294  
 
The summary statistics reveal several important insights:  

• 92% of IPC observations were in IPC Phase 3+. 
• 7% of IPC observations could be classi�ied as IPC escalations when compared to the previous 

period. 
• 88% of districts spent 80%-100% of the time in IPC Phase 3+. 
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Given most observations fall into IPC Phase 3 or above, the focus of the application is on preventing the 
transition from IPC Phase 3 to 4. The goal is to issue warnings of impending IPC Phase 4, bolstering 
prevention efforts. Figure 1 shows the FEWS NET IPC phase distribution between 2014 and 2023. 
 

Figure 1: FEWS NET IPC Phase distribution.  

The phase data is netted from humanitarian impacts, the values indicate the �ive phases of food insecurity: (1) minimal/none, 
(2) stressed, (3) crisis, (4) emergency, and (5) famine/catastrophe. 

 

 

2.2 Food security risk indicators 
To identify key indicators of worsening food security, datasets with comprehensive spatial and temporal 
coverage were reviewed. A thorough review of 26 available datasets was carried out to select food 
security risk indicators. These indicators were reviewed through several factors: 

• Data quality: The data quality of the indicator. 
• Relation to food security/nutrition: Whether the indicator is related to food security or 

nutrition. 
• Risk/outcome indicator analysis: Whether the indicator is a risk indicator or an outcome 

indicator. 
• Suitability: Whether the indicator is suitable for food security risk alert modeling based on 

expert consultation. 

The goal is to leverage this data to spot signs of impending emergencies through historical comparison, 
issuing alerts at two speci�ic thresholds. These thresholds are adjusted to balance the trade-off between 
false positives and false negatives effectively. Table 2 highlights the food security risk indicators used by 
the analysis. These indicators align with food and nutrition security dimensions used by IPC: food access, 
food availability and food stability (IPC, 2021). Direct measures of nutrition and food utilization were 
not available.  
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Table 2: Food security indicators 

For each indicator, the dimension corresponds to those recognized by the IPC framework. The method and window have been 
selected based on historical calibration. Alert and alarm indicate thresholds at which warnings are issued, with alarms 
indicating critical risks compared to alerts. 

Indicator Description Dimension Method Window Alert Alarm 

Food prices 
Average of top 5 
performing food 
items (YER) 

Access 

Percentage 
change from 
exponential 
moving average 
(EMA) 

4 months 
7.0%-
14.2% 
increase 

>14.2% 
increase 

Fuel prices 
Average of petrol 
and diesel price 
(YER) 

Access 

Percentage 
change from 
moving average  
(MA) 

4 months 
15.8%-
35.1% 
increase 

>35.1% 
increase 

Exchange 
rate 

YER to USD 
exchange rate Access 

Relative 
Strength Index 
(RSI) 

8 months 67.1-75.2 >75.2 

Drought 
Standardized 
Precipitation Index 
(SPI) 

Availability SPI 1 month -0.88 to-
0.12  <-0.88 

Con�lict 

District and 
neighboring 
districts averaged 
con�lict fatalities 

Stability RSI of the EMA 
14-month 
RSI over 12 
month EMA 

64.5-90.2 >90.2 

Displacement 
Summed 
displacements  
(from and to) 

Stability RSI of the EMA 
14-month 
RSI over 6 
month EMA 

55.1-68.7 >68.7 

 
Below, each data source is discussed and detail the different indicators that were constructed. Details on 
the formulas used to implement the different indicator methods are available in Annex I. 

2.2.1 Food prices 
In Yemen, the affordability of key food commodities is a critical indicator of food security levels. Rising 
food prices, currency devaluation, disruptions in public salary payments, and diminished job 
opportunities have signi�icantly decreased purchasing power, leaving more people unable to meet their 
basic needs (ACAPS, Mercy Corps, 2020) (ACAPS, 2023). Several food price indicators were explored to 
capture these drivers including individual food item analysis, custom food item baskets and the 
humanitarian Standard Minimum Expenditure Basket (SMEB) (Cash and Markets Working Group 
Yemen, 2022). Data is used from the World Bank’s RTFP data derived from WFP surveys, capturing 
monthly food prices at a district level (Andrée, 2021, Andrée, 2023a, Andrée, 2023b, Adewopo et al., 
2024). This methodology integrates actual data and machine learning estimates to monitor continuous 
food prices across, �illing in gaps where direct market data collection was not possible due to access 
issues in real time.  

Three methods were tested to analyze food prices: the percentage deviation from the Moving Average 
(MA), the percentage deviation from the Exponential Moving Average (EMA), both across time-windows 
ranging from 1 to 12 months, and the Relative Strength Index (RSI), across time-windows ranging from 
6 to 14 months. Both YER and USD food prices were modeled but separating these as two indicators 
worked better. In addition to the �ive food categories in the SMEB, prices for individual Real Time Food 
Prices (RTFP)2 food items were analyzed. Results indicated a strong predictive power of certain food 
categories, speci�ically imported foods such as beans, millet, sorghum, sugar, and wheat �lour. A 5-item 
basket consisting of these food items reached almost 10% lower loss than the SMEB basket. This resulted 

 
2 RTFP: https://microdata.worldbank.org/index.php/catalog/study/WLD_2021_RTFP_v02_M  

https://microdata.worldbank.org/index.php/catalog/study/WLD_2021_RTFP_v02_M
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in our selection of the average price of these �ive food items as our target indicator. The optimal method 
and time-window found was the percentage deviation from a four-month EMA. For detailed statistical 
outcomes, refer to Annex II. 

2.2.2 Fuel prices 
Fuel affordability remains a critical issue affecting food security in Yemen, with rising fuel prices 
increasing food distribution costs and, consequently, food prices (ACAPS, 2023). Yemen's dependence 
on fuel imports makes it susceptible to �luctuations in international oil prices, impacting internal fuel 
prices and driving up overland transportation costs and food prices. Additionally, higher fuel prices 
escalate the cost of living, pushing more people below the basic needs affordability threshold. 

Modeling employed the World Bank’s RTEP3 data (Andrée, 2021, Andrée, 2023a, Andrée, 2023c) derived 
from WFP surveys, capturing monthly food prices at the district level. For fuel price analysis, the same 
methods were used to developed indicators from the food price data. Diesel and petrol showed high 
predictive accuracy individually compared to gas prices as well as all other indicators. To capture robust 
signals from the data, a fuel basket was speci�ied consisting of an equal part of petrol and diesel. The 
percentage deviation from the 4-month EMA emerged as the most effective method. For detailed 
statistical outcomes, refer to Annex II. 

2.2.3 Exchange rate 
Exchange rate volatility signi�icantly in�luences food price changes, and particularly in areas controlled 
by the Internationally Recognized Government (IRG) of Yemen. In January 2020, the Central Bank of 
Yemen (CBY) in Sana’a prohibited the use of new Yemeni rial (YER) banknotes issued by the IRG-
controlled CBY in Aden, leading to a dual currency system. The printing of new YER banknotes by CBY 
Aden to �inance the IRG's budget de�icit has depreciated the YER against the USD, increasing the cost of 
goods and services for households. This depreciation affects purchasing power and, consequently, food 
security, underscoring the importance of continuous monitoring (ACAPS, 2023). The new notes are not 
accepted in areas controlled by the Ansar Allah (AA), resulting in a dual currency system with a 
pronounced in�lation differential. 

Two data sources for the exchange rate were considered: a Telegram source recording rates several 
times a week in both Aden and Sana’a, and the World Bank’s RTFX data (Andrée, 2021, Andrée, 2023a, 
Andrée, 2023d) derived from WFP surveys, which provides monthly averaged rates per governorate. 
The World Bank’s Real Time Exchange Rates (RTFX)4 data, offered more detail, better data coverage, and 
better modeling results and was selected as the exchange rate indicator for the analysis. The same 
indicators were constructed as for the fuel and food prices. Analysis over 6 to 14-month time windows 
revealed an 8-month RSI as most effective in signaling escalation risks. For comprehensive statistical 
details, see Annex II. 

2.2.4 Drought 
Drought signi�icantly impacts food security in Yemen, exacerbating water scarcity, reducing crop yields 
and livestock productivity, increasing reliance on expensive food imports, and intensifying the 
humanitarian crisis. It can also cause displacement and resource con�licts, further destabilizing the 
region. Despite imported food accounting for 83% of Yemenis' daily caloric intake (ACAPS, 2023), 
making drought a relatively less impactful food security risk compared to food prices or exchange rates, 
drought remains critical due to the role of agricultural in over half of the households' employment and 
the signi�icance of cash crops like Qat on income and expenditure, affecting household purchasing power 
(UNDP, 2022). 

 
3 RTEP: https://microdata.worldbank.org/index.php/catalog/study/WLD_2023_RTEP_v01_M  
4 RTFX: https://microdata.worldbank.org/index.php/catalog/study/WLD_2023_RTFX_v01_M 

https://microdata.worldbank.org/index.php/catalog/study/WLD_2023_RTEP_v01_M
https://microdata.worldbank.org/index.php/catalog/study/WLD_2023_RTFX_v01_M
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For drought analysis, rainfall data (Funk et al., 2015), Normalized Difference Vegetation Index (NDVI) 
(USGS, 2023), and Standardized Precipitation Index (SPI) (Guttman, 2007) were evaluated. Various 
methods, including Z-score (mean and median), moving averages of the anomaly rates, and the SPI, were 
tested. Crop calendar information for Yemen was used (FAO-FSIS, Government of Yemen, 2018) to 
determine the critical months for rainfall in crop growth, and indicators were tested that used the non-
crop months to �ix the signals at 0 in the data. Z-scores considering a crop calendar resulted generally in 
improved results. However, the best results came from the year-round data SPI method, which 
outperformed crop-growing only months. The prede�ined general thresholds recommend for the SPI to 
indicate severe droughts are a value of -1.3 and -1.6 to indicate extreme droughts. The optimized 
thresholds given by our model are higher than the standard SPI thresholds. For detailed statistical 
outcomes, refer to Annex II.  

2.2.5 Conflict 
Con�lict affects general security and the movement of people, crucial for agricultural and �isheries 
production and market access. Globally in 2017, 60% of undernourished people and 79% stunted 
children lived in con�lict-affected areas (FAO, IFAD, UNICEF, WHO, and WFP, 2017). Studies indicate that 
con�lict's impact on food security and nutrition worsens with prolonged con�lict and weak institutional 
response (Holleman, Jackson, Sanchez, & Vos, 2017), as seen in Yemen.  

ACLED data, tracking monthly con�lict incidents and fatalities at the district level, was utilized. Con�lict 
intensity was gauged by fatalities and incidents per district. Incidents include battles, explosions/remote 
violence, or violence against civilians. The analysis considered con�lict at both the district and 
surrounding district levels to capture exposure to nearby con�lict, de�ined as occurring within either one 
or two levels of proximity.  

Methods tested for both direct and neighboring district con�lict data included percentage deviations 
from MA and EMA, and the RSI of these EMAs. For neighboring con�lict, the averages over the 
neighboring districts were constructed �irst, before calculating the moving averages over time. The 
interpretation of this is that the RSI measures whether the EMA (compounding trend) of exposure to 
local/regional con�lict is surging or easing. Of the indicators tested, neighboring con�lict within one level 
proximity outperformed both local and two-level proximity indicators. The best performing was 
neighboring con�lict fatalities using RSI over a 14-month period based on the EMA of the last 12 months. 
This indicator picks up on escalations, and peaks in reaction to the compounding impacts of sustained 
violence. Detailed statistical results are available in Annex II. 

2.2.6 Displacement  
Displacement ampli�ies demand for food and services in host areas and often signi�ies severe livelihood 
disruptions. Research indicates signi�icant impacts of forced migration on wages, household income, 
consumption, wellbeing measures, and employment in both origin and destination communities 
(Calderón-Mejı́a & Ibáñez, 2016; Foged & Peri, 2016; Kreibaum, 2016; Maystadt & Duranton, 2019; 
George & Adelaja, 2022; Esen & Binatli, 2017; Ruiz & Silva, 2015). The UN International Organization for 
Migration's Displacement Tracking Matrix (IOM-DTM) provides monthly data on displacements to and 
from districts since 2014. In modeling displacement, total displacements to, from, and the aggregate of 
both were examined, using the same analytical methods as for con�lict modeling.  

The combined total of displacements to and from a district was chosen as the indicator, with the RSI over 
an EMA identi�ied as the optimal method. The analysis employed a 6-month time window for the EMA 
calculation and a 14-month time window for the RSI calculation. For detailed statistical outcomes, refer 
to Annex II. 
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3 Methods 
To set and test thresholds for food security indicators, a binary target variable was created from the IPC 
phases, adjusting for humanitarian impacts. Areas in crisis (IPC Phase 3) that would reach emergency 
status (IPC Phase 4) without aid were marked as emergencies. This approach aims to predict 
intervention needs rather than outcomes. Thus, IPC Phases ≤3 were coded as 0 (non-emergency) and ≥4 
as 1 (emergency). A focused sample was then taken that highlights district escalations, targeting 
instances where the prior period's target was 0, ensuring only genuine food security escalations are 
tracked. Figure 2 displays the data. Thresholds for each indicator were then �ine-tuned to best front run 
these new food insecurity emergencies. 

Figure 2: Distribution the target variable.  

Distribution of binarized indicator used to calibrate alerts, left). Distribution of escalation events, used to validate the early 
warning capability, right). 

  

Notation-wise, this can be detailed as follows. Speci�ically, the target variable takes the value 1 if a food 
security emergency is observed, de�ined as IPC categories 4, or 5, and 0 otherwise. For convenience, 0 
and 1 can be referred to generically as "class labels," with observations corresponding to food security 
emergencies being the "positive class." 𝑌𝑌 was de�ined as a column vector containing the class labels, 
encompassing all districts and months where an IPC rating was observed. 𝑋𝑋 is the food security indicator 
de�ined as a corresponding vector with indicator values used to generate warnings. 𝑌𝑌� was de�ined as the 
corresponding column vector of binary predictions generated according to the following threshold rule: 

𝑌𝑌� = �1
0  
𝑖𝑖𝑖𝑖 𝑋𝑋 > 𝑐𝑐
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

( 1 ) 

𝑐𝑐 is de�ined as a numeric threshold. Warnings for time 𝑡𝑡 + 1 are always generated with information 
available at time 𝑡𝑡. In other words, 𝑐𝑐 represents the threshold at which an observed value for any given 
indicator is high enough to predict that the IPC rating in the next time step will be at least IPC Phase 4. 
The threshold is optimized (see Table 2 for values) to minimize a loss function that evaluates the ability 
to front run transitions into emergencies by validating against a speci�ic subset of data: district/month 
observations with an IPC phase rating of 4 and above, provided the prior rating was below 4. More 
speci�ically, let 𝑌𝑌∗ and 𝑌𝑌�∗ be de�ined as the sub-vectors of 𝑌𝑌 and 𝑌𝑌� that included the entries preceded by 
non-emergencies. A conformable vector was used of ones denoted as 𝐼𝐼 and a scalar weight denoted as 𝑤𝑤 
to evaluate predictive performance using this prediction loss function: 

𝐿𝐿 = 𝑤𝑤
𝑌𝑌′�𝐼𝐼 − 𝑌𝑌��
𝑌𝑌′𝑌𝑌

+ (1 −𝑤𝑤)
(𝐼𝐼 − 𝑌𝑌)′𝑌𝑌�  

(𝐼𝐼 − 𝑌𝑌)′(𝐼𝐼 − 𝑌𝑌) = 𝑤𝑤 ∗ 𝐹𝐹𝐹𝐹𝐹𝐹 + (1 −𝑤𝑤) ∗ 𝐹𝐹𝐹𝐹𝐹𝐹 

( 2 ) 
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This loss function is a weighted average of the False Positive Rate (FPR) and False Negative Rate (FNR) 
measured against emergency escalations. 𝐿𝐿 is oriented so that lower values correspond to better 
predictions. The special cases where 𝑤𝑤 is equal to the rate of occurrence of the positive class or equal to 
0.5, the value for 1 − 𝐿𝐿 equals the standard Accuracy and common Balanced Accuracy rates. The weight 
factor determines if the FNR or the FPR is more penalised. Values of 𝑤𝑤 that place increasing weights on 
false negatives are used to determine thresholds to generate warnings for different risk levels. The 
settings correspond to: 

• 𝑤𝑤 = ⅓: failing to recognize an emergency (false negative) is half as costly as raising a false 
warning 

• 𝑤𝑤 = ½: failing to recognize an emergency (false negative) is just as costly as raising a false 
warning 

• 𝑤𝑤 = ⅔: failing to recognize an emergency (false negative) is twice as costly as raising a false 
warning 

For each risk indicator, the weight factor 𝑤𝑤 = ½ was used to �ind an optimal method and time-window. 
The solution spaces per indicator were trimmed down following several �iltering steps. First, we �ilter 
out all solutions where the Loss (𝑤𝑤 = ½ ) >= 0.5 and where the FPR >= 0.5. This excludes calibration 
results that are uninformative, or attain low average loss by raising warnings most of the time potentially 
leading fatigue. Solutions where FNR > 3*FPR, and solutions where FPR > 2*FNR, were removed as well, 
to avoid extremely unbalanced error pro�iles that may be undesirable for similar reasons. Finally, two 
method-speci�ic �iltering steps were followed to remove implausible solutions. First, for RSI indicators, 
solutions involving threshold values below 50, which indicate decreases instead of increases, were 
excluded. Second, for Z-score methods, solutions involving threshold values above 0.5 were excluded. 
The Z-scores are used for the drought indicators, where positive values indicate an increase relative to 
the benchmark values, which is the opposite of what these indicators are intended to capture. After these 
�iltering steps, the optimal performing method/time-window combination is selected, with which we 
determine the two thresholds. 

Having found an optimal method and time-window, weight factors of 1/3 and 2/3 respectively were 
used to determine threshold values that minimize loss in two scenarios. For alerts indicating heightened 
risks, emphasis was on reducing false negatives (𝑤𝑤 = ⅔:), leading to more frequent warnings to catch 
potential emergencies early. For alarms indicating critical risks, the focus was on lowering false positives 
(𝑤𝑤 = ⅓), resulting in fewer but more certain warnings. The two-step approach ensures that alarms are 
generated from the same distribution as alerts, only at higher risk levels. This means that heightened 
alerts capture the majority of potential emergencies, while the subset of more conservative critical alerts 
capture those that are most likely to escalate.  

4 Results  
Two sets of results were produced from the analysis. Initially, the indicators were examined individually 
to evaluate their predictive capabilities and to establish thresholds for generating alerts (signaling 
elevated risks) and alarms (indicating critical risks). Following the identi�ication of optimized 
thresholds, a multivariate analysis was conducted. This analysis aimed to determine the most effective 
way to combine these optimized indicators, assess the incremental accuracy of each indicator, and 
ascertain the ideal number of indicators for monitoring. This comprehensive approach ensures a 
nuanced understanding of each indicator's contribution to an overall risk assessment and facilitates the 
development of a robust model that can accurately predict areas at risk of worsening food insecurity. 

4.1 Individual indicators 
Table 3 presents the univariate validation results of the six main indicators from Table 2. The statistical 
validation underscores varied performance and differential sensitivity and speci�icity across indicators. 
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Recall that alarms are issued based on a more conservative calibration of thresholds compared to alerts. 
This trades false and true positives, aiming to minimize the occurrence of false alarms while maintaining 
the capacity to detect true emergencies. 

Among the indicators, price data emerge as the most important group of indicators to signal 
deteriorating food security conditions. Food prices emerge as the most predictive indicator of lower risk 
levels (alerts) and demonstrate a relatively balanced performance with a moderate FPR of 0.27 and FNR 
of 0.33 for alerts, and a signi�icantly reduced FPR of 0.05 for alarms, highlighting a successful calibration 
towards conservatism for critical risks. This is mirrored by the loss values, which shift from 0.31 for 
alerts to a more favorable 0.28 for alarms, indicating an effective rebalancing between sensitivity and 
speci�icity at critical risk levels. Fuel prices produce similar alerts but emerge as the more predictive 
indicator for critical risks (alarms). Fuel price alarms result in a lower FNR (0.45 as opposed to 0.73 for 
food prices), with slightly higher FPR (0.16, compared to 0.06 for food price alarms). Together, this 
provides an improved calibration for critical risks (loss value of 0.26). 

Table 3: Food security risk indicator validation 

Summary of statistical validation for food security indicators, delineating calibrated thresholds for 'Alerts' and 'Alarms'. 'Alerts' 
are optimized to lower false negatives, enhancing the frequency of warnings for early emergency detection. 'Alarms' focus on 
reducing false positives to ensure the reliability of critical risk warnings, facilitating targeted and timely responses. 

Risk indicator Food prices Fuel prices Exchange Rates 
Method Percentage of EMA Percentage of MA RSI 
Risk level Alert Alarm Alert Alarm Alert Alarm 
True positives 298 121 286 246 321 248 
False positives 1,144 234 1,196 687 1,923 1,464 
True negatives 3,131 4,041 3,079 3,588 2,352 2,811 
False negatives 146 323 158 198 123 196 
Kappa 0.20 0.24 0.18 0.26 0.10 0.09 
Accuracy 0.73 0.88 0.71 0.81 0.57 0.65 
Balanced Accuracy 0.70 0.61 0.68 0.70 0.64 0.61 
F1 Score 0.32 0.30 0.30 0.36 0.24 0.23 
Precision 0.21 0.34 0.19 0.26 0.14 0.14 
FPR 0.27 0.05 0.28 0.16 0.45 0.34 
FNR 0.33 0.73 0.36 0.45 0.28 0.44 
Loss (Alert, w=2/3; Alarm, w=1/3) 0.31 0.28 0.33 0.26 0.33 0.38 
Risk indicator Drought Conflict Displacement 
Method SPI RSI of EMA RSI of EMA 
Risk level Alert Alarm Alert Alarm Alert Alarm 
True positives 258 129 228 105 212 129 
False positives 1,492 647 1,217 557 952 548 
True negatives 2,783 3,628 3,058 3,718 3,323 3,727 
False negatives 186 315 216 339 232 315 
Kappa 0.10 0.10 0.11 0.09 0.15 0.13 
Accuracy 0.64 0.80 0.70 0.81 0.75 0.82 
Balanced Accuracy 0.62 0.57 0.61 0.55 0.63 0.58 
F1 Score 0.24 0.21 0.24 0.19 0.26 0.23 
Precision 0.15 0.17 0.16 0.16 0.18 0.19 
FPR 0.35 0.15 0.28 0.13 0.22 0.13 
FNR 0.42 0.71 0.49 0.76 0.52 0.71 
Loss (Alert, w=2/3; Alarm, w=1/3) 0.40 0.34 0.42 0.34 0.42 0.32 
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Exchange rates, analyzed through RSI, exhibit the highest FPR among all indicators reaching 0.45 for 
alerts, and decreasing to 0.34 for alarms. Despite this reduction, the high initial FPR points to a 
signi�icant over-triggering tendency, potentially leading to alarm fatigue. Nevertheless, its loss values, 
from 0.33 for alerts to 0.38 for alarms, indicate moderate predictive value, with room for improving 
speci�icity. Our further analysis shows that the indicator performs much better when taking a 
North/South divide into consideration.   

Drought indicators, utilizing the SPI at default thresholds showed a stark contrast in FPR between alert 
(0.05) and alarm (0.03) levels, suggesting a very conservative approach that unfortunately results in a 
high false negative rate (FNR) of 0.94 for alerts and 0.96 for alarms. This extreme conservatism, re�lected 
in its loss values (0.64 for alerts and 0.34 for alarms), suggests standard threshold values may be under-
predicting true risks, limiting its utility in timely emergency responses. Optimizing the thresholds had a 
strong impact on improving the results lowering loss (0.40 for alerts and 0.34 for alarms albeit with a 
more balanced error mixture), reaching similar loss values as the con�lict and displacement indicators. 

Con�lict and displacement indicators, employing RSI of the EMA of local and neighboring con�lict 
fatalities, highlight a different challenge. With notably high FNRs at the alert level (0.49 for con�lict and 
0.52 for displacements), which increase to 0.76 and 0.71 for alarms respectively, these indicators show 
a propensity to under-predict emergencies. Their loss values re�lect this, with a signi�icant reduction in 
predictive error from alerts to alarms, for con�lict (from 0.42 to 0.34) and displacements (from 0.42 to 
0.32), driven by lower FPRs and a better performance at the critical risk level. 

To examine the impact of slight adjustments in thresholds, kernel density plots for the six indicators 
were generated (Figure 3), based on continuous values with orange lines for alert triggers and red for 
critical alarms. The plots reveal that alerts trigger more frequently, and allow some deterioration in 
indicator values to occur before escalating to alarms.  

Figure 3: Kernel density plots for the six indicators.  

Orange line = alert. Red line = alarm. Kernel densities are estimated and indicative of smooth approximated distributions and 
may indicate some mass at impossible values, such as RSI values outside of the 0 -100 range.  
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Figure 4: Historic food security warnings 2009 to 2024 

The graph displays the percentage of districts for which alerts and alarms are issued. Alerts are plotted in a cumulative sense 
in that they remain in place when the risks transition into alarms. Annex III contains a detailed timeline outlining critical food 
security events from 2014 to 2023, as compiled by food security experts. Accompanying this timeline are enlarged versions of 
the �igure below, focusing on speci�ic periods to provide clearer insights. 

 

Figure 4 illustrates the nationwide historical distribution of districts receiving alerts and alarms over 
time, indicating that alarms that signal higher risk levels are generally issued more conservatively and 
follow after alerts have already indicated preceding risk levels. Several periods stand out. Notably, the 
period of 2010-2011, marked by a sharp currency devaluation re�lective of Yemen's severe internal 
con�lict and the onset of the Arab Spring protests. The subsequent period from 2011 to 2014 appears 
relatively stable with a sporadic issuance of drought alerts. It is crucial to acknowledge that 
displacement data only begins in 2014, and con�lict data in 2015, implying that the full spectrum of 
potential alerts and alarms prior to these years is not captured. From 2014 onward, the displacement 
and con�lict data contribute to a stark rise in the issuance of alerts and alarms, with the food and fuel 
price data highlighting additional risks during the Saudi-led port blockade in 2015. A signi�icant increase 
in currency devaluation and in�lation from 2017, coupled with escalating con�lict, culminated in a peak 
in alarm issuance in 2018. Lastly, a widespread in�lationary surge across all price indicators triggered 
another spike in alarms around 2022. Finally, while the major food insecurity periods are marked by 
escalations in economic and con�lict indicators, the drought alarms do not center on any speci�ic year 
and the highest count of alarms occurs when economic and con�lict risks coincide with periods of 
drought. 

4.2 Multivariate indicator analysis   
The univariate validation exercise con�irmed the relevance of each indicator while also underscoring the 
limited predictive capability of relying solely on one alone. In practice, monitoring multiple indicators 
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raises the question of how best to integrate these measures and evaluate the relative value of additional 
indicators. Annex IV includes correlation matrices for the various indicators, revealing some 
correlations between different warnings. Notably, food and fuel prices show a stronger correlation with 
each other, whereas displacement and con�lict warnings are more closely related. This indicates that 
combining either a con�lict or displacement indicator with food prices may yield a more comprehensive 
overview than pairing food and fuel price indicators.  

To systematically evaluate this, the six indicators were analyzed using a Logit model against the target 
indicator. The analysis focused on how the integration of individual indicators enhanced the model's 
performance in predicting the target indicator. To explore the incremental accuracy of each indicator, we 
conducted (inverse) Recursive Feature Elimination (RFE). Leveraging the outcomes from the 
Generalized Linear Models (GLM), we ranked the indicators by their importance, with the most 
in�luential indicator positioned �irst. We then forecasted the outcome, determining the optimal 
threshold for dichotomizing the outcome into binary results and computing the Balanced Accuracy. 
Subsequently, the second-ranked indicator was incorporated, and the procedure was iterated, 
recalculating the Balanced Accuracy with each additional indicator until the metric was derived for the 
full set of indicators. The �indings are depicted in Figure 5. The analysis indicates that sequentially 
adding indicators in order of importance improves predictive performance, with the most substantial 
improvements observed upon adding the initial indicators. However, performance saturates or may even 
drop beyond a certain point, indicating that combining multiple indicators may lead to over-�itting. 

Table 4 presents the regression outcomes for the  GLM employing RFE. The initial three models are based 
on: (1) normalized continuous indicator data, (2) binary alert data, and (3) binary alarm data. A Brier 
score nearing zero and a pseudo R-squared value, computed as 1− log loss/ uninformative log loss, 
approximating 0.6 indicate that these simple models possess a commendable predictive capability 
regarding actual escalations in food security.  

Table 4: Foundational GLM results 

Regression results for three models: 1) normalized continuous indicator data, 2) binary alert data, and 3) binary alarm data. To 
assess model performance, the Brier score, pseudo R-squared and a weighted average of error types, optimizing the probability 
cut-off used of classi�ication, were calculated. 

 (1) GLM Continuous (2) GLM Alert (3) GLM Alarm 

Food price  
3.805*** 

     (0.298) 
1.061*** 

     (0.138) 
0.812*** 

     (0.149) 

Fuel price   0.737*** 
     (0.137) 

1.453*** 
     (0.139) 

Exchange rate   1.213*** 
     (0.119) 

0.868*** 
     (0.113) 

Displacement    0.261* 
     (0.153) 

Conflict    -0.048 
(0.160)  

Drought  
  
  

0.888*** 
     (0.111) 

0.343**  
(0.140)  

Pseudo R2       0.574        0.621        0.615  
Brier       0.082        0.074        0.075  
Loss w=1/2       0.298        0.252        0.275  
Loss w=1/3       0.289        0.275      0.256  
Loss w=2/3       0.308        0.230        0.295  
Note: *p<0.1; **p<0.05; ***p<0.01  

The results in Table 4 help understand the interplay of different indicators when used jointly to track 
overall food insecurity risks. Strikingly, when using continuous indicator values and employing RFE, the 
best forecasting power was achieved when only using the food price indicator. In contrast, models (2) 
and (3) that respectively use binary indicators with optimized thresholds as inputs, reach considerably 
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lower loss and utilize more indicators. Combining alerts yields the lowest loss values (for instance 0.23 
for w=2/3, which is considerably below the univariate scores in Table 3). In conclusion, the 
dichotomization into alerts and alarms does not only provide more interpretable warnings as compared 
to the level readings of the continuous indicators, it also helps improve forecasting in a simple linear 
modeling framework. Furthermore, the correlation matrices in Annex IV reveal that the dichotomization 
reduces correlations between the data, which ensures that fewer warnings raise simultaneously. 

Figure 5: Marginal accuracy of basic indicators 

The vertical axis plots cross-validated balanced accuracy using a Generalized Linear Model (GLM), the horizontal axis shows 
how prediction performance evolves as indicators are combined. From right to left, indicators are dropped in order of 
signi�icance, the �irst indicator thus being the most dominant. Results are for Model (2) (left), Model (3) (right). 

 

Figure 6: Marginal accuracy of all indicators  

The vertical axis plots cross-validated balanced accuracy using a GLM, the horizontal axis shows how prediction performance 
evolves as indicators are combined. From right to left, indicators are dropped in order of signi�icance, the �irst indicator thus 
being the most dominant. The predictors include all alerts and alarms with interaction terms for IRG/AA divide. Optimal 
number of indicators is identi�ied when graph reached maximum balanced accuracy. Results are for Model (7) (left) and Model 
(8, �inal) (right).  

 

Given the current geopolitical and economic context in Yemen, characterized by a division between areas 
controlled by IRG and AA, the study explored region-speci�ic dynamics. Models (4) – (6) in Table 5 build 
upon the frameworks of Models (1) – (3), integrating region-speci�ic interaction effects. Following this 
integration, RFE was employed to eliminate non-informative predictors and optimize predictions for 
out-of-sample data. The �indings highlight a signi�icant interaction effect across the IRG/AA divide. For 
the models utilizing alerts and alarms, these interactions center on the in�lation and drought indicators. 
Critically, the extremely parsimonious alerts Model (5) suggests that food security in the IRG area is 
driven by in�lation, while food security in the AA areas is driven by droughts. This outcome aligns the 
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existence of a dual currency system in the country when currency devaluation is rampant in IRG, and the 
AA areas are associated with increased agriculture and susceptibility to droughts. It is also worth noting 
that the alarms Model (6) tracks multiple dimensions of food security, and now outperforms the alerts 
model, as shown by the better loss values, suggesting that the use of alerts alone in Model (5) leads to 
an oversimpli�ied representation of true food security drivers. 

Table 5: GLM results with an IRG/AA interaction 

Regression results for three models 4-6, extended using a regional interaction effect across the IRG/AA divide, and optimized 
using recursive feature elimination. To assess model performance, the Brier score and pseudo R-squared tests were calculated 
and a weighted average of error types was calculated, optimizing the probability cut-off used of classi�ication. 

 (4) GLM Continuous 
IRG/AA 

(5) GLM Alerts 
IRG/AA 

(6) GLM Alarms 
IRG/AA 

Food price   -3.706*** 
(0.781) 

Fuel price -6.659*** 
(1.266) 

  

Exchange rate 6.829*** 
(1.101) 

  

Displacement 7.608*** 
(1.097) 

  

Conflict 4.619*** 
(0.829) 

 1.195*** 
(0.459) 

Drought -4.507*** 
(1.163) 

3.782*** 
(0.271) 

3.498*** 
(0.404) 

Food price with IRG/AA 
interaction 

6.186*** 
(0.968) 

1.971*** 
(0.133) 

5.228*** 
(0.836) 

Fuel price with IRG/AA 
interaction 

7.430*** 
(1.526)  1.751*** 

(0.155) 
Exchange rate with IRG/AA 
interaction 

-6.434*** 
(1.231 

1.643*** 
(0,145) 

1.012*** 
(0.135) 

Displacement with IRG/AA  
interaction 

-7.702*** 
(1.254) 

  

Conflict with IRG/AA 
interaction 

-4.070*** 
(0.953) 

 -1.502** 
(0.587) 

Drought with IRG/AA 
interaction 

4.287*** 
(1.385) 

-3.460*** 
(0.317) 

-4.038*** 
(0.546) 

Pseudo R2 0.597 0.603 0.640 
Brier 0.078 0.077 0.068 
Loss w=1/2 0.271 0.277 0.253 
Loss w=1/3 0.242 0.25 0.219 
Loss w=2/3 0.299 0.304 0.286 
Note *p<0.1; **p<0.05; ***p<0.01 

 
In our �inal comprehensive analysis, we combined both alerts and alarms and applied RFE across all 
predictors and interaction effects. Models (1) – (6) revealed that, while each indicator has a foundation 
in theory and is predictive on a univariate basis, optimal forecasting speci�ications typically result from 
discarding certain variables altogether. We, therefore, created a simple meta indicator which sums over 
the different alerts and alarms, to signal the number of warnings of any type. We applied a 4-month MA, 
to capture possible delays in impacts. Using this additional indicator, we apply RFE across all possible 
interactions. The results are in Table 6 and the RFE results for these models are in Figure 6. As depicted 
in Figure 6, the model's prediction performance improves signi�icantly with the inclusion of the initial 
set of predictors and then �lattens. Model (7) identi�ies the optimal combination of predictors, while 
Model 8 is designed to select the best predictors within the constraint that the meta-indicators for alerts 
and are maintained. This approach ensures that all dimensions are kept in the model and is justi�ied by 
the theoretical relevance of each indicator to food security and their demonstrated univariate 
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signi�icance. Retaining a relationship with all indicators in the model, despite causing a potential 
marginal decrease in historical prediction performance, guarantees the inclusion of essential food 
security aspects in future analyses, thereby enhancing the model's resilience to evolving food security 
trends. The pseudo R-squared (0.698), Brier score (0.057) and Balanced Accuracy (0.824) values of 
Model (8) �inally remained identical at the triple digit level when compared to the purely statistically 
optimized Model (7), yielding a signi�icant improvement over models (1) - (6). This observation 
underscores that incorporating additional dimensions of food security can be done without incurring a 
measurable performance trade-off, effectively capturing broader food security considerations without 
impact on overall model effectiveness. 

Table 6: Comprehensive assessment and final GLM specification 

Regression results for two models that nest models 5-6. Model 7 employs recursive feature elimination across all predictors, 
and model 8 only across interaction effects. To assess model performance, the Brier score and pseudo R-squared tests were 
calculated and a weighted average of error types was calculated, optimizing the probability cut-off used of classi�ication. 

  (7) GLM combined  
IRG/AA 

(8) GLM combined  
IRG/AA keeping base 

indicators 
Predictors:  Alerts Alarms Alerts Alarms 

Meta indicator  2.369*** 
(0.207) 

-0.634* 
(0.342) 

3.042*** 
(0.441) 

Food price  -4.538*** 
(0.861)  -4.401*** 

(0.877) 

Fuel price  0.785*** 
(0.213)  0.811*** 

(0.214) 

Exchange Rate -1.331*** 
(0.378) 

 -0.971** 
(0.434)  

Displacement     

Con�lict -2.713*** 
(0.629) 

1.332** 
(0.667) 

-1.980*** 
(0.479)  

Drought 2.196*** 
(0.494) 

2.006*** 
(0.526) 

2.537*** 
(0.509) 

1.921*** 
(0.534) 

Meta indicator with IRG/AA 
interaction 

0.601*** 
(0.131) 

-2.898*** 
(0.310) 

1.299*** 
(0.398) 

-3.648*** 
(0.533) 

Food price with IRG/AA 
interaction  6.786*** 

(0.913) 
 6.643*** 

(0.928) 
Fuel price with IRG/AA 
interaction 

1.023*** 
(0.226)  0.972*** 

(0.226)  

Exchange rate with IRG/AA 
interaction 

3.649*** 
(0.490) 

-0.510** 
(0.223) 

3.219*** 
(0.551) 

-0.542** 
(0.222) 

Con�lict rate with IRG/AA 
interaction 

3.264*** 
(0.707) 

-1.980** 
(0.793) 

2.456*** 
(0.558) 

-0.478** 
(0.877) 

Drought with IRG/AA 
interaction 

-1.521*** 
(0.582) 

-2.502*** 
(0.685) 

-1.911*** 
(0.596) 

-2.458*** 
(0.690) 

Pseudo R2 0.698 0.698 
Brier 0.057 0.057 
Loss w=1/2 0.176 0.176 
Loss w=1/3 0.167 0.168 
Loss w=2/3 0.186 0.184 
Note *p<0.1; **p<0.05; ***p<0.01 

4.3 Estimates of populations in emergency 
Using the GLM, it is possible to express the combined risk assessment in terms of the expected number 
of people in areas at risk of experiencing an IPC Phase 4+. For each district and time period, the GLM 
gives a probability between 0 and 1. Speci�ically, the total population per district can be multiplied by 
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the GLM-modeled probability to calculate the population-weighted average IPC Phase 4+ risk. This in 
turn can be scaled to match historical population counts in IPC Phase 4+ areas. To estimate the expected 
number of people in areas at risk of experiencing a deterioration into IPC Phase 4, model 8 was chosen.  

The following notation clari�ies the calculation. Let 𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝 = ∑ 𝑃𝑃𝚤𝚤� ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1 / ∑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛

𝑖𝑖=1  be the population-
weighted IPC Phase 4+ probability. Using the binary FEWS NET IPC Phase 4+ data, the share of the 
population in IPC Phase 4+ areas can be calculated 𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝 = ∑ 𝑌𝑌 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛

𝑖𝑖=1 / ∑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1 . A linear rescaling 

is then required between and 𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝 to remove aby bias stemming from different scales that 
results from optimizing for balanced accuracy, rather than for minimizing RMSE against the population 
totals directly. To rescale between the FEWS NET data and the GLM, a single scaling parameter is 
calculated using Least Squares. To provide some robustness to outliers or spikes in the modeled data, 
the scaling parameter is calculated using a centered moving average of the modeled probabilities. 

𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝 = 𝛽𝛽 × 𝐿𝐿�𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝, 3�,𝑘𝑘� 

( 3 ) 

In which 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥, 3) denotes a 3-period centered moving average of 𝑥𝑥 and 𝐿𝐿(⋅,𝑘𝑘) is a 𝑘𝑘-period lag 
operator. The regression is �itted for 𝑘𝑘 = 1, … , 12, and the optimal lag is selected by minimizing MAE. 
This 𝛽̂𝛽 is then used to calculate the �inal population that are predicted to be in areas experiencing IPC 
Phase 4+. 
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Figure 7: availability of IPC assessments 

IPC assessments are contingent on suf�icient evidence for high-con�idence declarations, with no phases declared when 
information availability does not meet con�idence criteria. The graph therefore highlights the likely access issues that may have 
also impacted FEWS NET assessments.  

 
This �inal metric enables the monitoring of how alerts and alarms collectively correspond to the 
expected number of individuals in areas at risk of reaching IPC Phase 4+ conditions. To calculate this, we 
utilized 𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝, incorporating data from both FEWS NET (starting from 2014) and IPC data (from 2019 
onwards). The data integration was performed due to several challenges with the underlying assessment 
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data. Notably, in regions controlled by AA, we observed minimal variation in FEWS NET data across 
assessments post-COVID-19 pandemic. This is likely due to the assessment process, which involves 
projecting a most likely scenario and then during the next assessment cycle adjusting it based on new 
evidence. Reduced access and information scarcity have likely led to minimal adjustments, possibly 
causing the initial pre-pandemic assessment to carry over into later analyses. Concurrently, IPC data 
indicated considerably lower proportions of the population in IPC Phase 4+ areas since inception. It is 
important to note that IPC assessments are contingent on suf�icient evidence for high-con�idence 
declarations, with no phases declared when information availability does not meet con�idence criteria. 
The sporadic availability of IPC data, particularly the absence of comprehensive coverage in AA areas 
highlighted in Figure 7, evidences the access issues that may have contributed to the persistence of initial 
IPC Phase 4 ratings in FEWS NET reports. Consequently, we noted that our modeled population 
estimates line up closely to FEWS NET �igures in the pre-COVID-19 period, while lining up more closely 
to the IPC data in the period after. 

Recognizing the potential biases and coverage issues that lead to discrepancies in both data sets, we 
applied Last Observation Carried Forward (LOCF) imputation to district-level IPC data. 𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝was then 
calculated using FEWS NET data for the period before IPC data availability and a linear average of both 
datasets afterwards, as shown in the accompanying visuals. 𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝 thus represents an estimated 
percentage of populations in areas experiencing IPC Phase 4, giving equal weight to the last known IPC 
and last known FEWS NET assessments. We then determined the optimal scaling and lag parameters, 
�inding the optimal lag value 𝑘𝑘 to be 5. This suggests our �inal estimate can predict food security 
conditions most reliably �ive months in advance, indicating that alerts and alarms can preemptively 
signal deterioration into IPC Phase 4 conditions by at least �ive months.  

Figure 8 presents the detailed comparison of IPC Phase 4+ �igures from IPC and FEWS NET sources 
against the model's estimates of the population at risk of reaching IPC Phase 4+ conditions, based on 
data-driven alerts and alarms. Notably, the trends in the data-driven visuals precede the of�icial 
declarations, aligning with the previously identi�ied optimal lead-time of �ive months in IRG and four 
(but not signi�icantly different from �ive) in AA. Speci�ically, in areas controlled by AA, the model's results 
closely align with FEWS NET data before 2020 and more closely follow IPC data thereafter although our 
indicators point to an overall lower severity than what is suggested by either FEWS Net or IPC data. It is 
important to note that for the entirety of 2022, there are no IPC assessments and a subsequent lower 
con�idence in the FEWS NET phases. The modeled results in turn showed a sharp increase in estimates 
for the IRG areas in 2022 compared to 2020. This could similarly be attributed to overall uncertainties 
associated with the of�icial IPC phase data not meeting con�idence thresholds in both 2020 and 2022 as 
shown in Figure 7, making the relative increase captured by the model estimates less apparent in the 
of�icial data. Finally, by 2023, the model estimates decreased, highlighting a period with notably fewer 
alerts and alarms, whereas the gap between FEWS NET and IPC data widened, particularly in IRG areas.  

The difference between FEWS NET and IPC data highlights the importance of analyzing not only the 
ultimate population estimates from of�icial or modeled sources but also monitoring the underlying alerts 
and alarms. This approach provides a thorough understanding of the factors driving food security. 
Overall, the �indings indicate that combining indicators can reasonably express IPC phase exposure, 
although there are challenges related to the availability and potential biases in the underlying phase 
data. While the �inal population estimate is a valuable meta-indicator, the results emphasize the 
signi�icance of evaluating the contributions of individual indicators to improve real-time food security 
monitoring and enable prompt interventions. 

Figure 8: Estimated population in areas experiencing IPC Phase 4+  

Comparison between of�icial IPC Phase 4+ �igures, FEWS NET and the calculated estimation of people at risk of experiencing a 
deterioration into IPC Phase 4+ in IRG and AA areas. 
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