第七章 立体几何与空间向量(测试)

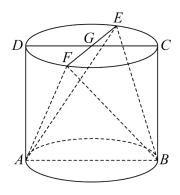
(考试时间: 120分钟 试卷满分: 150分)

注意事项:

1	答卷前,	考生务必将自己的姓名、	准考证号填写在答题卡上。
ı.	台位刖,	有生新业科目后的姓石、	(化气) [[5] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4

2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。

擦	干净后	i,再选涂其	他答	案标号。	回答非选	择题日	时,将名	答案写在答	题卡上。写在	本试卷上无效。	
	3.	考试结束后,	将本	试卷和	答题卡一并	产交回]。				
第一部分(选择题 共 58 分)											
一、选择题: 本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有一项是符合题目要											
	的。 设α	<i>β</i> ν 县三 个 7	2. 国本	面 日	$\alpha \mid \nu = l \mid B$	Ίν=	= m 🗊	α// β 县 1	P m的()		
1.				ш, д.					, W H1 ()		
		E分不必要条	71午					充分条件			
	C. 充	E要条件				D.	既不充	分也不必要	要条件		
2.	己知	向量 $\overset{r}{a} = (0,0)$,1),	$\dot{b} = (1, -1)$	1,1),向量	a + b	在向量	a 上的投影	沙向量为 ()		
	A. (0,0,2)				В.	(0,0,1)				
	C. (0, 0, -1)				D.	(0,0,-	2)			
3.	四棱:	台的上底面是	是边长	上为 2 的 i	正方形,下	底面	i是边长	为4的正方	5形,四条侧棱	b的长均为2√2	,则该四棱
台	的体积	円为()									
	A. 2	$8\sqrt{3}$	В.	$84\sqrt{2}$		C.	$\frac{28\sqrt{6}}{3}$		D. $28\sqrt{2}$		
4.	己知理	球 <i>O</i> 的体积:	为 $\frac{500}{3}$	<u>)π</u> ,点 Δ	4 到球心 0	的距	离为3	,则过点 A	的平面α被球	<i>O</i> 所截的截面	面积的最小
值	是()									
	A. 9	π	В.	12π		C.	16π		D. 20π		
5.	三棱	誰 A – BCD 中	atural A	D⊥平面	$\vec{\mathbb{I}} ABC$, \angle	BAC =	= 60°,	AB = 1, A	C=2, $AD=4$	4,则三棱锥 <i>A</i> -	-BCD外接
球	的表面	ī积为()									
	A. 1	0π	В.	20π		C.	25π		D. 30π		
6.	如图,	,已知正方刑	杉 ABC	CD 为圆	柱的轴截面	$\vec{\square}$, A	AB = BC	T=2, E , I	7 为上底面圆周	周上的两个动点	, 且 <i>EF</i> 过
上底面的圆心 G ,若 $AB \perp EF$,则三棱锥 $A-BEF$ 的体积为()											

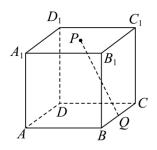


- B. $\frac{4}{2}$
- C. $\frac{2\sqrt{2}}{3}$ D. $\frac{2\sqrt{3}}{3}$
- 7. 在三棱柱 $ABC A_1B_1C_1$ 中,点 D 在棱 BB_1 上,满足 $V_{A-BCC_1D} = \frac{4}{9}V_{ABC-A_1B_1C_1}$,点 M 在棱 A_1C_1 上,且

 $A_1M = MC_1$, 点 N 在直线 BB_1 上,若 MN // 平面 ADC_1 ,则 $\frac{NB}{NB_1} = ($)

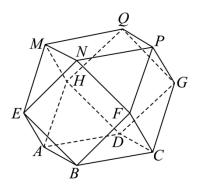
- A. 2
- B. 3
- C. 4
- D. 5
- 8. 已知 E, F 分别是棱长为 2 的正四面体 ABCD 的对棱 AD, BC 的中点.过 EF 的平面 α 与正四面体 ABCD 相 截,得到一个截面多边形 7,则下列说法正确的是()
 - A. 截面多边形 τ 不可能是平行四边形
- B. 截面多边形 τ 的周长是定值
- C. 截面多边形 τ 的周长的最小值是 $\sqrt{2} + \sqrt{6}$ D. 截面多边形 τ 的面积的取值范围是 $\left[1,\sqrt{2}\right]$
- 二、选择题: 本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部 选对的得6分,部分选对的得部分分,有选错的得0分.
- 9. 已知 a, b, c 为三条不同的直线, α , β 为两个不同的平面,则下列说法正确的是()
 - A. 若 $a // b, a \subset \alpha, b \subset \beta, \alpha \mid \beta = c$, 则a Pc

 - C. 若 $a // \alpha, b // \alpha, a | b = A, a \subset \beta, b \subset \beta$,则 $\alpha // \beta$
- 10. 如图,在棱长为 2 的正方体 $ABCD A_lB_lC_lD_l$ 中,点 P 是正方体的上底面 $A_lB_lC_lD_l$ 内(不含边界)的动 点, 点 Q 是棱 BC 的中点, 则以下命题正确的是()



- A. 三棱锥Q-PCD 的体积是定值
- B. 存在点 P, 使得 PQ与 AA 所成的角为 60°

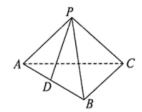
- C. 直线 PQ 与平面 A_1ADD_1 所成角的正弦值的取值范围为 $\left(0, \frac{\sqrt{2}}{2}\right)$
- D. 若 $PD_1 = PQ$,则 P 的轨迹的长度为 $\frac{3\sqrt{5}}{4}$
- 11. 半正多面体(semiregular solid)亦称"阿基米德多面体",是由边数不全相同的正多边形围成的多面体,体现了数学的对称美。二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为 $\sqrt{2}$,则()



- A. BF 上平面 EAB
- B. 该二十四等边体的体积为 $\frac{20}{3}$
- C. 该二十四等边体外接球的表面积为6π
- D. PN 与平面 EBFN 所成角的正弦值为 $\frac{\sqrt{2}}{2}$

第二部分(非选择题 共92分)

- 三、填空题:本题共3小题,每小题5分,共15分。
- 12. 已知四面体有两个面是边长为2的正三角形,另外两个面是直角三角形,则该四面体的体积等于______.
 13. 如图,在三棱锥 P-ABC 中,VABC 为等边三角形, $\triangle APC$ 为等腰直角三角形,PA=PC,平面 PAC 上

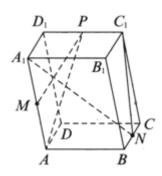


14. 要使正方体 $ABCD - A_lB_lC_lD_l$ 以直线 CA_l 为轴,旋转 n° 后与其自身重合,则 n 的最小正值为______.

平面 ABC, D 为 AB 的中点,则异面直线 AC 与 PD 所成角的余弦值为_____.

四、解答题: 本题共 5 小题, 共 77 分。解答应写出文字说明、证明过程或演算步聚。 $15. \quad (13 \ \%)$

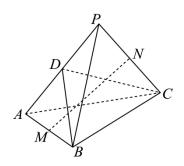
如图所示,在平行六面体 $ABCD-A_1B_1C_1D_1$ 中,M、N分别是 AA_1 、BC的中点. 设 $AA_1=a$, AB=b , AD=c .



(1)已知P是 C_1D_1 的中点,用 $\overset{\bullet}{a}$ 、 $\overset{\bullet}{b}$ 、 $\overset{\bullet}{c}$ 表示 $\overset{\bullet}{AP}$ 、 $\overset{\bullet}{A_1N}$ 、 $\overset{\bullet}{MP}+\overset{\bullet}{NC_1}$;

16. (15分)

已知三棱锥P-ABC, $AB\perp BC$, $BC\perp CP$,D,M,N分别是AP,AB,CP 的中点, $4AB=3BC=12\ , \ PB=\sqrt{34}\ , \ \ \Box$ 面角的P-BC-D 余弦值为 $\frac{3\sqrt{10}}{10}$.



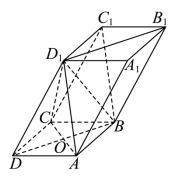
(1)证明: $AB \perp MN$;

(2)求直线 MN 与平面 BCD 所成角的正弦值.

17. (15分)

如图,平行六面体 $ABCD - A_lB_lC_lD_l$ 的体积为 $24\sqrt{3}$, $D_lA = D_lC$, $D_lD = D_lB$, CD = AD = 4 ,

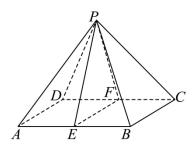
 $\angle ADC = 60^{\circ}$.



- (1)求点 A 到平面 DBB_1D_1 的距离;
- (2)求二面角 $D-BD_1-C_1$ 的正弦值.

18. (17分)

如图,四棱锥 P—ABCD 中,底面 ABCD 是矩形, PA=PB , PC=PD ,且平面 PAB 上平面 PCD . E,F 分别是 AB,CD 的中点. $AB=\sqrt{2}BC=\sqrt{2}$.



- (1)求证: ! PEF 是直角三角形;
- (2)求四棱锥P-ABCD体积的最大值;
- (3)求平面 PEF 与平面 PBC 的夹角余弦值的范围.

19. (17分)

对于空间向量m = (a,b,c),定义 $\|m\| = \max\{|a|,|b|,|c|\}$,其中 $\max\{x,y,z\}$ 表示x,y,z这三个数的最大值.

(1)
$$\Box$$
 \Rightarrow $a = \left(6, \frac{11}{2}, 1\right), \quad b = \left(x, \frac{1}{2}x, -x\right).$

- ①写出 $\|a\|$, 写出 $\|b\|$ (用含x的式子表示);
- ②当 $0 \le x \le 4$,写出 $\left\| a b \right\|$ 的最小值及此时x的值;
- (2)设 $a = (x_1, y_1, z_1)$, $b = (x_2, y_2, z_2)$, 求证: $\|a + b\| \le \|a\| + \|b\|$
- (3)在空间直角坐标系 Q—xyz 中, A(2,0,0), B(0,4,0), C(0,0,6), 点 P 是以 Q 为球心, 1 为半径的球面上的动点,点 Q 是 ΔABC 内部的动点,直接写出 $\|PQ\|$ 的最小值及相应的点 P 的坐标.

第七章 立体几何与空间向量(测试)

(考试时间: 120分钟 试卷满分: 150分)

注意事项:

- 1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮 擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
 - 3. 考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共58分)

- 一、选择题: 本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有一项是符合题目要 求的。
- 1. 设 α, β, γ 是三个不同平面,且 $\alpha \mid \gamma = l, \beta \mid \gamma = m$,则 $\alpha // \beta \in l Pm$ 的()
 - A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

【答案】A

【解析】由于 $\alpha // \beta$, $\alpha | \gamma = l, \beta | \gamma = m$, 由平面平行的性质定理可得: l P m,

所以 $\alpha // \beta$ 是l Pm 的充分条件:

但当l P m, $\alpha \mid \gamma = l, \beta \mid \gamma = m$, 并不能推出 $\alpha // \beta$, 也有可能 α, β 相交,

所以 $\alpha // \beta$ 是l Pm 的不必要条件;

故选:A.

- 2. 已知向量a = (0,0,1), b = (1,-1,1), 向量a + b 在向量a 上的投影向量为 ().
 - A. (0,0,2)

B. (0,0,1)

C. (0,0,-1)

D. (0,0,-2)

【答案】A

【解析】向量
$$^{r}_{a}$$
+ $^{i}_{b}$ 在向量 $^{i}_{a}$ 上的投影向量为 $\frac{\binom{r}{a}+\binom{l}{b}\cdot \binom{r}{a}}{\binom{r}{a}}\cdot \frac{r}{\binom{l}{a}} = \frac{(1,-1,2)\cdot(0,0,1)}{1}\cdot \frac{(0,0,1)}{1} = (0,0,2)$

故选: A

- 3. 四棱台的上底面是边长为 2 的正方形,下底面是边长为 4 的正方形,四条侧棱的长均为 $2\sqrt{2}$,则该四棱 台的体积为()
- A. $28\sqrt{3}$ B. $84\sqrt{2}$ C. $\frac{28\sqrt{6}}{3}$ D. $28\sqrt{2}$

【答案】C

【解析】过 $AE \perp AC$,由正四棱台的性质可知:AE是该正四棱台的高,

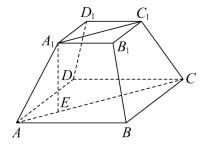
因为四边形 ACC₁A₁ 是等腰梯形,

$$\text{FTU} AE = \frac{1}{2} \left(A_1 C_1 - AC \right) = \frac{1}{2} \left(\sqrt{4^2 + 4^2} - \sqrt{2^2 + 2^2} \right) = \sqrt{2} \text{ ,}$$

由勾股定理可知: $A_1E = \sqrt{A_1A^2 - A_1E^2} = \sqrt{8-2} = \sqrt{6}$,

所以该四棱台的体积为 $\frac{1}{3}$ × $\left(4^2+2^2+\sqrt{4^2\times2^2}\right)$ × $\sqrt{6}=\frac{28\sqrt{6}}{3}$,

故选: C



4. 已知球 O 的体积为 $\frac{500\pi}{3}$,点 A 到球心 O 的距离为 3,则过点 A 的平面 α 被球 O 所截的截面面积的最小

值是()

Α. 9π

B. 12π

C. 16π

D. 20π

【答案】C

【解析】设球 O 的半径为 R, 则 $\frac{4}{3}\pi R^3 = \frac{500\pi}{3}$, 解得 R = 5.

因为点A到球心O的距离为3,

所以过点 A 的平面 α 被球 O 所截的截面圆的半径的最小值为 $r = \sqrt{5^2 - 3^2} = 4$,

则所求截面面积的最小值为 $\pi r^2 = 16\pi$.

故选: C

5. 三棱锥 A-BCD 中, AD 上平面 ABC , $\angle BAC=60^\circ$, AB=1 , AC=2 , AD=4 ,则三棱锥 A-BCD 外接球的表面积为()

A. 10π

B. 20π

C. 25π

D. 30π

【答案】B

【解析】在VABC中, $\angle BAC = 60^{\circ}$, AB = 1, AC = 2,

由余弦定理可得 $BC^2 = AB^2 + AC^2 - 2AB \cdot AC \cdot \cos \angle BAC$,

即 $BC^2 = 1 + 4 - 2 \times 1 \times 2 \times \cos 60^\circ = 3$,所以 $BC = \sqrt{3}$,

设VABC的外接圆半径为r,

则
$$2r = \frac{BC}{\sin \angle BAC} = \frac{\sqrt{3}}{\sin 60^{\circ}} = 2$$
,所以 $r = 1$,

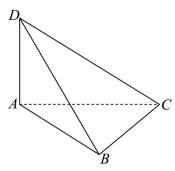
 $AD \perp \Psi \stackrel{\frown}{\text{in}} ABC$, $\stackrel{\frown}{\text{il}} AD = 4$,

设三棱锥A-BCD外接球半径为R,

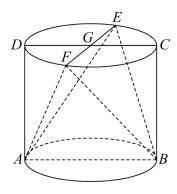
$$\mathbb{R}^2 = r^2 + (\frac{1}{2}AD)^2$$
, $\mathbb{R}^2 = 1 + 4 = 5$,

所以三棱锥 A-BCD 外接球的表面积为 $4\pi R^2 = 20\pi$.

故选: B.



6. 如图,已知正方形 ABCD 为圆柱的轴截面, AB = BC = 2 , E , F 为上底面圆周上的两个动点,且 EF 过 上底面的圆心 G,若 $AB \perp EF$,则三棱锥 A - BEF 的体积为 ()



A. $\frac{2}{3}$

C. $\frac{2\sqrt{2}}{3}$ D. $\frac{2\sqrt{3}}{3}$

【答案】B

【解析】如图设圆柱的下底面的圆心为O,连接AG,BG,OG,

则 OG = BC = 2,且 $OG \perp$ 平面 GEC,

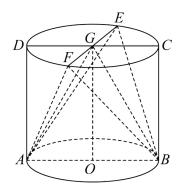
 $EF \subset \text{\Psi} \text{ in } GEC$, $\text{MU} OG \perp EF$, V AB//CD, $AB \perp EF$,

所以 $CD \perp EF$,又 $CD \mid OG = G$,CD, $OG \subset$ 平面CDAB,

所以 $EF \perp$ 平面CDAB,且EG = GF = 2,

$$S_{VABG} = \frac{1}{2}AB \times OG = 2$$
,

所以 $V_{A-BEF} = \frac{1}{3}S_{VABG}EF = \frac{1}{3} \times 2 \times 2 = \frac{4}{3}$.



故选: B.

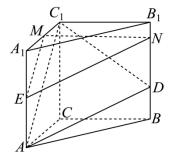
7. 在三棱柱 $ABC - A_1B_1C_1$ 中,点 D 在棱 BB_1 上,满足 $V_{A-BCC_1D} = \frac{4}{9}V_{ABC-A_1B_1C_1}$,点 M 在棱 A_1C_1 上,且

 $A_1M = MC_1$, 点 N 在直线 BB_1 上,若 MN // 平面 ADC_1 ,则 $\frac{NB}{NB_1}$ = ()

- A. 2
- B. 3
- C. 4
- D. 5

【答案】D

【解析】如图所示:



因为
$$V_{A-A_1B_1C_1} = \frac{1}{3}V_{ABC-A_1B_1C_1}$$
,所以 $V_{A-BCC_1B_1} = \frac{2}{3}V_{ABC-A_1B_1C_1}$,

所以
$$V_{A-BCC_1D} = \frac{4}{9}V_{ABC-A_1B_1C_1} = \frac{4}{9} \times \frac{3}{2}V_{A-BCC_1B_1} = \frac{2}{3}V_{A-BCC_1B_1}$$

所以
$$S_{\#\mathcal{B}CC_1D} = \frac{2}{3} S_{\text{四边形}BCC_1B}$$
 ,所以 $S_{\text{V}C_1B_1D} = \frac{1}{3} S_{\text{四边形}BCC_1B_1}$,则 $\frac{DB_1}{BB_1} = \frac{2}{3}$,

设三棱柱 $ABC - A_1B_1C_1$ 的侧棱长为 6, 则 $DB_1 = 4$, DB = 2,

又M为 A_iC_i 的中点,取 A_iA 的中点E, 连接ME, 则 $ME//C_iA$ 。

过 E 作 EN / AD ,且 $EN \mid BB_1 = N$,连接 MN ,又 $ME \cap EN = E$,

所以平面 MNE / / 平面 ADC_1 , 又 $MN \subset$ 平面 MNE ,

所以MN / /平面 ADC_1 ,所以DN = EA = 3,

所以
$$NB_1 = DB_1 - DN = 4 - 3 = 1$$
 , 所以 $BN = 5$, 则 $\frac{NB}{NB_1} = 5$,

故选: D

8. 已知 E, F 分别是棱长为 2 的正四面体 ABCD 的对棱 AD, BC 的中点.过 EF 的平面 α 与正四面体 ABCD

相截,得到一个截面多边形τ,则下列说法正确的是()

A. 截面多边形 τ 不可能是平行四边形 B. 截面多边形 τ 的周长是定值

C. 截面多边形 τ 的周长的最小值是 $\sqrt{2} + \sqrt{6}$ D. 截面多边形 τ 的面积的取值范围是 $\left[1,\sqrt{2}\right]$

【答案】D

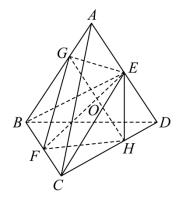
【解析】对于 A, 当平面 α 过 AD 或 BC 时, 截面为三角形.

易知正四面体关于平面 ADF 对称,将平面 α 从平面 ADF 开始旋转与 AB 交于点 G 时,

由对称性可知,此时平面 α 与CD交于点H,且AG = DH,

此时截面为四边形 EGFH, 且注意到当 G,H 分别为 AB,CD 的中点时, 此时满足 AG = DH,

且 $GF //AC, AC //EH, GF = EH = \frac{1}{2}AC$,即此时截面四边形 EGFH 是平行四边形,故 A 错误;



对于 BC, 设 $AG = m(0 \le m \le 2)$, 由余弦定理得 $GE = \sqrt{m^2 + 1 - m} = \sqrt{\left(m - \frac{1}{2}\right)^2 + \frac{3}{4}}$,

$$GF = \sqrt{(2-m)^2 + 1 - (2-m)} = \sqrt{(m-\frac{3}{2})^2 + \frac{3}{4}}$$
,

由两点间距离公式知,GE + GF 表示动点(m,0)到定点 $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ 和 $\left(\frac{3}{2}, -\frac{\sqrt{3}}{2}\right)$ 的距离之和,

当三点共线时取得最小值
$$\sqrt{\left(\frac{1}{2} - \frac{3}{2}\right)^2 + \left(\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}\right)^2} = 2$$
,

由二次函数单调性可知,当m=0或m=2时,GE+GF取得最大值 $1+\sqrt{3}$,

所以截面多边形 τ 周长的取值范围是 $\left[4,2+2\sqrt{3}\right]$, 故 BC 错误;

对于 D, 记 GH 与 EF 的交点为 O, 由对称性 $\angle EFG = \angle EFH$, FG = FH,

所以
$$EF \perp GH$$
, $S_{EGFH} = \frac{1}{2}EF \cdot GH$,

因为
$$AF = \sqrt{AB^2 - BF^2} = \sqrt{3}$$
,

所以
$$EF = \sqrt{AF^2 - AE^2} = \sqrt{2}$$
,所以 $S_{EGFH} = \frac{\sqrt{2}}{2}GH$,

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/337046102154010010