2023-2024学年云南省三校高三高考备考实用性联考卷(八)数学试题

一、单选题: 本题共 8 小题, 每小题 5 分, 共 40 分。在每小题给出的选项中, 只有一项是符合题目要求 的。

1. 已知 z_1 , z_2 是方程 $x^2 - 2x + 2 = 0$ 的两个复根,则 $\left| z_1^2 - z_2^2 \right| =$

A. 2

- B. 4
- C. 2*i*
 - D. 4*i*

2. 已知集合 $A = \{-1,0,1\}$, $B = \{a,a^2 - 3a + 2\}$, 若 $A \cap B = \{0\}$, 则 a = (

- A. 0 或 1
- B. 1 或 2
- C. 0 或 2
- D. 0 或 1 或 2

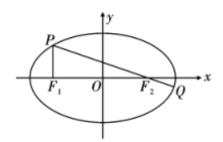
3. 有7个人排成前后两排照相,前排站3人后排站4人,其中甲同学站在前排,乙同学站在后排的概率为 ()

- B. $\frac{1}{14}$ C. $\frac{2}{21}$ D. $\frac{2}{7}$

4. 平面向量 \overrightarrow{a} 与 \overrightarrow{b} 的夹角为 $\frac{2\pi}{3}$,已知 $\overrightarrow{a}=(6,-8)$, $|\overrightarrow{b}|=10$,则向量 \overrightarrow{b} 在向量 \overrightarrow{a} 上的投影向量的坐标 为()

- **A.** (3, -4)
- B. (4,-3) C. (-4,3) D. (-3,4)

5. 已知椭圆 E: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的左、右焦点分别为 F_1 , F_2 (如图) , 过 F_2 的直线交 $E \oplus P$, Q 两 点,且 $PF_1 \perp x$ 轴, $|PF_2| = 9|F_2Q|$,则E的离心率为()



- C. $\frac{\sqrt{3}}{3}$ D. $\frac{\sqrt{3}}{2}$

6. 已知正四棱锥的高为 h,其顶点都在同一球面上,若该球的体积为 36π ,且 $\frac{3}{2} \le h \le \frac{9}{2}$,则当该正四棱锥 体积最大时,高h的值为()

A. 2

- B. $\frac{3}{2}$
- C. 4
- D. $\frac{9}{2}$

7. 定义方程 f(x) = f'(x) 的实数根 **x** 叫做函数 f(x) 的"奋斗点". 若函数 $g(x) = \ln x$, $h(x) = x^3 - 2$ 的"奋 斗点"分别为m, n, 则m, n 的大小关系为()

- A. $m \geqslant n$
- B. m > n C. $m \leqslant n$
- $\mathbf{D.} \ m < n$

8. 若 $x, y \in R$,则 $\sqrt{(x-y)^2 + (xe^x - y + 1)^2}$ 的最小值为()

- **A.** $\frac{\sqrt{2}}{2}$
- B. $\sqrt{2}$
- C. $\frac{1}{2}$ D. $\frac{\sqrt{2}}{6}$

二、多选题:本题共4小题,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5 分, 部分选对的得2分, 有选错的得0分。

9. 已知 f(x), g(x) 都是定义在 R 上且不恒为 0 的函数,则()

- A. $y = f(x) \cdot f(-x)$ 为偶函数
- **B.** y = g(x) + g(-x) 为奇函数

C. 若 g(x) 为奇函数, f(x) 为偶函数,则 y = f(g(x)) 为奇函数

D. 若 f(x) 为奇函数, g(x) 为偶函数,则 y = f(x) - g(x) 为非奇非偶函数

10. 已知 α , β 是两个不同的平面, m, n, l是三条不同的直线, 则下列命题正确的是()

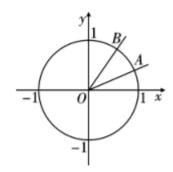
A. 若 $m \perp \alpha$, $n \perp \alpha$, 则m//n

B. 若 $m//\alpha$, $n//\alpha$, 则m//n

C. 若 $\alpha \perp \beta$, $\alpha \cap \beta = l$, $m \subset \alpha$, $m \perp l$, 则 $m \perp \beta$

D. 若 $\alpha \cap \beta = l$, $m//\alpha$, $m//\beta$, 则m//l

11. 在如图所示的平面直角坐标系中,锐角 α , β 的终边分别与单位圆交于A,B 两点.则()



A. 若 **A** 点的横坐标为 $\frac{12}{13}$, **B** 点的纵坐标为 $\frac{4}{5}$, 则 $\cos(\alpha + \beta) = \frac{16}{65}$

B. $\sin (\alpha + \beta) < \sin \alpha + \sin \beta$

C. $\sin \alpha > \sin (\alpha + \beta) + \sin \beta$

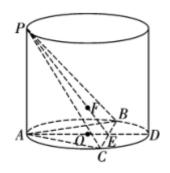
D. 以 $\sin \alpha$, $\sin \beta$, $\sin (\alpha + \beta)$ 为三边构成的三角形的外接圆的面积为 $\frac{\alpha}{3}$

- **12**. 已知在长方体 $ABCD A_1B_1C_1D_1$ 中, AB = BC = 2, $AA_1 = 2\sqrt{2}$,点 P 是四边形 $A_1B_1C_1D_1$ 内 (包含边界)的一动点,设二面角 P AD B的大小为 α ,直线 PB 与平面 ABCD 所成的角为 β ,若 $\alpha = \beta$,则()
- A. 点 P 的轨迹为一条抛物线
- B. 直线 PA_1 与直线 CD 所成角的最大值为 $\frac{\pi}{4}$
- C. 线段 PB 长的最小值为 3
- D. 三棱锥 $P-A_1BC_1$ 体积的最大值为 $\frac{2\sqrt{2}}{3}$
- 三、填空题:本题共4小题,每小题5分,共20分。
- **13.** 在 $(\frac{1}{x} + x^2)^6$ 的展开式中常数项是______. (用数字作答)
- **14**. 假设云南省 **40** 万学生数学模拟考试的成绩 **X** 近似服从正态分布 N(98,100),已知某学生成绩排名进入 全省前 **9100** 名,那么该生的数学成绩不会低于______分(参考数据 $P(\mu-\sigma < X < \mu+\sigma) = 0.6827$, $P(\mu-2\sigma < X < \mu+2\sigma) = 0.9545)$
- **15**. 已知抛物线 C: $x^2 = 8y$,在直线 y = -4 上任取一点 P,过点 P 作抛物线 C 的两条切线,切点分别为
- A, B, 则原点到直线 AB 距离的最大值为_____.
- **16.** 定义 ||x|| 表示与实数 x 的距离最近的整数 (当 x 为两相邻整数的算术平均值时, |x| 取较大整数) ,如 $\left| \left| \frac{4}{3} \right| \right| = 1$, $\left| \left| \frac{5}{3} \right| \right| = 2$, ||2|| = 2 , ||2.5|| = 3 , 令函数 K(x) = ||x|| , 数列 $\{a_n\}$ 的通项公式为 $a_n = \frac{1}{K(\sqrt{n})}$,

- 四、解答题:本题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。
- 17. (本小题 10 分)

如图,正 $\triangle ABC$ 是圆柱底面圆 O 的内接三角形,其边长为a.AD 是圆 O 的直径,PA 是圆柱的母线,E 是 AD 与 BC 的交点,圆柱的轴截面是正方形.

- (1) 记圆柱的体积为 V_1 ,三棱锥P-ABC 的体积为 V_2 ,求 $\frac{V_1}{V_2}$;
- (2) 设 F 是线段 PE 上一点,且 $FE = \frac{1}{2}PF$,求二面角 A FC O 的余弦值.



18. (本小题 12 分)

已知函数 $f(x) = 4\sin\omega x \sin\left(\omega x + \frac{\pi}{6}\right) - \sqrt{3}$ 的相邻两条对称轴之间的距离为 $\frac{\pi}{2}$.

(1) 求函数 f(x) 在区间 $\left[\frac{\pi}{3}, \frac{3\pi}{4}\right]$ 上的值域;

(2) 在锐角 $\triangle ABC$ 中,角 A, B, C 的对边分别为 a, b, c,且 $f(A) = \sqrt{3}$, $\sqrt{2}a = \sqrt{3}b$, $c = \sqrt{6} + \sqrt{2}$, 求 $\triangle ABC$ 的面积.

19. (本小题 12 分)

已知数列 $\{a_n\}$ 的前**n**项和为 S_n , $a_1 = 1$, $S_{n+1} = 2S_n + 2^{n+1}$, $n \in N^*$.

(1) 求数列 $\{a_n\}$ 的通项公式;

(2) 设 $b_n = \frac{S_n}{3^n}$, $\{b_n\}$ 的前 \mathbf{n} 项和为 T_n ,若对任意的正整数 \mathbf{n} ,不等式 $T_n > \frac{m^2 - m + 7}{27}$ 恒成立,求实数 \mathbf{m} 的取值范围.

20.

该题正在审核中, 敬请期待~

21. (本小题 12 分)

已知圆 C: $(x+\sqrt{5})^2+y^2=4$,定点 $D(\sqrt{5},0)$,圆 C 上某一点 D_1 恰好与点 D 关于直线 PQ 对称,设直线 PQ 与直线 D_1C 的交点为 T.

(1) 求证: ||TC| - |TD|| 为定值,并求出点 T 的轨迹 E 方程;

(2) 设 A(-1,0) , **M** 为曲线 **E** 上一点 , **N** 为圆 $x^2 + y^2 = 1$ 上一点 (M,N 均不在 **x** 轴上). 直线 **AM** , **AN** 的斜率分别记为 k_1 , k_2 , 且 $k_1 = -4k_2$. 求证:直线 **MN** 过定点,并求出此定点的坐标.

22. (本小题 12 分)

- 已知函数 $f(x) = \ln(x+2) x + 2$, $g(x) = ae^x x + \ln a$.
- (1) 求函数 f(x) 的极值;
- (2)请在下列①②中选择一个作答(注意:若选两个分别作答则按选①给分).
- ①若 $f(x) \leq g(x)$ 恒成立,求实数 a 的取值范围;
- ②若关于x的方程f(x) = g(x)有两个实根,求实数a的取值范围.

答案和解析

1. 【答案】B

【解析】【分析】

本题考查关于 x 的实系数一元二次方程在复数集中根,复数的模的计算,属于基础题.

由题意可得 $z_1 = 1 + i$, $z_2 = 1 - i$, 利用复数运算求解即可.

【解答】

解: 由 $x^2 - 2x + 2 = 0$, 则 $(x - 1)^2 = -1$,

所以 $z_1 = 1 + i$, $z_2 = 1 - i$,

$$|z_1^2 - z_2^2| = |(z_1 + z_2)(z_1 - z_2)| = |2 \times 2i| = 4$$
 ,

故选B.

2. 【答案】 C

【解析】解: 由于 $A \cap B = \{0\}$,则 $0 \in B$.

若 a = 0,则 $a^2 - 3a + 2 = 2$,此时 $B = \{0, 2\}$ 符合题意.

若 $a^2 - 3a + 2 = 0$,则 a = 1 或 **2**,

a = 1 时, $B = \{0,1\}$,此时 $A \cap B = \{0,1\}$ 不合题意;

a = 2 时, $B = \{0, 2\}$ 符合题意.

因此a = 0或2.

故选C.

根据集合的并集的结果分类讨论求参数.

本题主要考查集合的基本运算,根据交集的定义进行计算是解决本题的关键,是基础题.

3. 【答案】D

【解析】【分析】

本题考查古典概型及其计算,属于基础题.

先计算总基本事件数,可以看成 7 人站一排有 A_7^7 种,再计算甲同学站在前排,乙同学站在后排的基本事件数,根据古典概型的概率计算公式可得.

【解答】

解: 先计算总事件数,可以看成7人站一排有 A_7^7 种.

现在考虑符合题意的情况,从余下5人中选2人与甲站在前排,

乙站在后排有 $C_5^2 A_3^3 A_4^4$ 种,概率为 $P = \frac{C_5^2 A_3^3 A_4^4}{A_7^7} = \frac{2}{7}$,故选 D.

4. 【答案】D

【解析】【分析】

本题主要考查投影向量和数量积的坐标运算,属于基础题.

利用向量的数量积的坐标运算即可求解.

【解答】

解:
$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \frac{2}{3} \pi = -50$$
,

向量方在向量分上的投影向量的坐标为

$$\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}|} \cdot \frac{\overrightarrow{a}}{|\overrightarrow{a}|} = \frac{-50}{10} \times \frac{(6,-8)}{10} = (-3,4) \text{ , b选} D.$$

5. 【答案】*A*

【解析】【分析】

本题考查椭圆的标准方程和几何性质,考查运算求解能力、推理论证能力,考查数学运算及逻辑推理核心素养,属于中档题.

根据 $PF_1 \perp x$, $|PF_2| = 9|F_2Q|$ 求出点 **Q** 的坐标, 然后代入 **E** 方程即可求出结果.

【解答】

解: 依题意设
$$P(-c,y_1),Q(x_2,y_2)$$
 , 则 $\frac{c^2}{a^2}+\frac{y_1^2}{b^2}=1$, 所以 $y_1=\frac{b^2}{a}$;

由于
$$|PF_2|=9|F_2Q|$$
 ,所以 $\overrightarrow{PF_2}=9\overrightarrow{F_2Q}$,所以 $(2c,-y_1)=9(x_2-c,y_2)$,

所以
$$x_2 = c + \frac{2c}{9} = \frac{11c}{9}, y_2 = -\frac{b^2}{9a}$$

曲
$$\frac{x_2^2}{a^2} + \frac{y_2^2}{b^2} = 1$$
 得 $\frac{\left(\frac{11c}{9}\right)^2}{a^2} + \frac{\left(\frac{b^2}{-9a}\right)^2}{b^2} = 1$, 化为 $121c^2 + b^2 = 81a^2$,

所以
$$3c^2 = 2a^2$$
 , 得 $e = \frac{\sqrt{6}}{3}$,

故选 A.

6.【答案】C

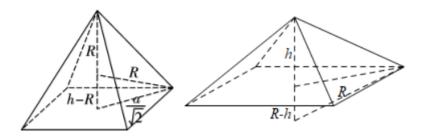
【解析】【分析】

本题主要考查球的切接问题以及锥体、球体的体积,属于中档题.

设正四棱锥的底边长为 \mathbf{a} ,球的半径为 \mathbf{R} ,则 $R^2 = (h - R)^2 + (\frac{a}{\sqrt{2}})^2$,根据球的体积公式求得 \mathbf{R} ,再由棱锥体积公式以及利用导数求得取最值时 \mathbf{h} 的值即可.

【解答】

解:如图,设正四棱锥的底边长为a,球的半径为R,



因为
$$V_{ ext{ iny H}} = rac{4}{3}\pi R^3 = 36\pi$$
 ,

$$\therefore R = 3$$

可知
$$R^2 = (h - R)^2 + \left(\frac{a}{\sqrt{2}}\right)^2$$
 ,则 $a^2 = -2h^2 + 12h$,

该正四棱锥的体积为 $V = \frac{1}{3}a^2 \cdot h = \frac{1}{3}(-2h^3 + 12h^2)$,

则
$$V' = -2h^2 + 8h = -2h(h-4)$$
,

$$abla h \in [\frac{3}{2}, \frac{9}{2}]$$
 ,

则当
$$h \in \left[\frac{3}{2}, 4\right)$$
时, $V' > 0$; 当 $h \in \left(4, \frac{9}{2}\right]$ 时, $V' < 0$;

故当h = 4时, V取得最大值.

故选C.

7. 【答案】D

【解析】【分析】

本题考查导数的新定义问题,属于中档题.

根据题意分别求得m,n的范围,即可得解.

【解答】

解: 函数
$$g(x) = \ln x$$
 , 得 $g'(x) = \frac{1}{x}$ 由题意可得, $g(m) = g'(m)$, 即 $\frac{1}{m} = \ln m$,

设
$$H(x)=\frac{1}{x}-\ln x$$
 , $H'(x)=-\frac{1}{x^2}-\frac{1}{x}$, 因为 $x>0$, 所以 $H'(x)<0$, 易得 $H(x)$ 在 $(0,+\infty)$ 上单

调递减且
$$H(1) = 1 > 0$$
 , $H(2) = \frac{1}{2} - \ln 2 = \ln \frac{\sqrt{e}}{2} < 0$, 故 $1 < m < 2$,

由 $h(x) = x^3 - 2$,得 $h'(x) = 3x^2$,由题意得: $n^3 - 2 = 3n^2$, $n = 3 + \frac{2}{n^2} > 3$, 所以 m < n ,故选 D.

8.【答案】A

【解析】【分析】

本题主要考查两点间的距离公式,点到直线的距离,导数的几何意义应用,属于拔高题.

将求最值问题转化成求两点距离问题,再利用导数求出切线斜率,最终转化成点到直线的距离.

【解答】

解:
$$\sqrt{(x-y)^2 + (xe^x - y + 1)^2}$$
 可以看成点 $P(x, xe^x)$ 与点 $Q(y, y - 1)$ 之间的距离,

而点 $P(x, xe^x)$ 是函数 $f(x) = xe^x$ 图象上的点,

点 Q(y, y-1) 是直线 I: y = x-1 上的点,

即
$$\sqrt{(x-y)^2 + (xe^x - y + 1)^2} = |PQ|$$
 的最小值,

即为函数 f(x) 上的点到直线 I: y = x - 1 上的点的距离的最小值,

$$f'(x) = (x+1)e^x$$
,

设函数 $f(x) = xe^x$ 在点 $M(x_0, y_0)$ 处的切线 l_1 与直线 / 平行,

则直线 l_1 的斜率为 1,可得 $f'(x_0) = (1 + x_0)e^{x_0} = 1$,

整理得 $e^{x_0}(1+x_0)-1=0$,

 $g(x) = e^{x}(1+x) - 1$ 在定义域内单调递增,且 g(0) = 0,

...方程 $e^{x_0}(1+x_0)-1=0$ 有且仅有一个解 $x_0=0$,则 M(0,0),

故
$$|PQ|$$
 的最小值为点 $M(0,0)$ 到直线 I : $x-y-1=0$ 的距离 $d=\frac{|0-0-1|}{\sqrt{1^2+(-1)^2}}=\frac{\sqrt{2}}{2}$,

故选 A.

9. 【答案】AD

【解析】【分析】

本题考查了函数的奇偶性的判断,属于中档题.

利用奇偶函数的定义分别判断即可.

【解答】

解:设 $h(x) = f(x) \cdot f(-x)$,因为 f(x)是定义在 R 上的函数,

所以 h(x) 的定义域为 R , $h(-x) = f(-x) \cdot f(x) = h(x)$,

所以 h(x) 为偶函数,故 A 正确;

t(x) = g(x) + g(-x) , 因为 g(x) 是定义在 R 上的函数, 所以 t(x) 的定义域为 R ,

t(-x) = g(-x) + g(x) = t(x) , 所以 t(x) 为偶函数, 故 B 错误;

设 m(x) = f(g(x)) , 因为 f(x) , g(x) 都是定义在 R 上的函数,

所以 m(x) 的定义域为 R, 因为 g(x) 为奇函数, f(x) 为偶函数, 所以

m(-x) = f(g(-x)) = f(-g(x)) = f(g(x)) = m(x), 所以 m(x) 为偶函数, 故 C 错误;

设 n(x) = f(x) - g(x) , 因为 f(x) , g(x) 都是定义在 R 上的函数, 所以 n(x) 的定义域为 R ,

$$n(x) + n(-x) = f(x) - g(x) + f(-x) - g(-x) = f(x) - g(x) - f(x) - g(x) = -2g(x)$$
,

因为 g(x) 是不恒为 $\mathbf{0}$ 的函数, 所以 n(x) + n(-x) = 0 不恒成立,

所以 n(x) 不是奇函数,

$$n(x) - n(-x) = f(x) - g(x) - [f(-x) - g(-x)] = f(x) - g(x) + f(x) + g(x) = 2f(x)$$
,

因为 f(x) 是不恒为 $\mathbf{0}$ 的函数, 所以 n(x) = n(-x) 不恒成立,

所以 n(x) 不是偶函数,所以 n(x) 是非奇非偶函数,故 **D** 正确,故选 AD.

10. 【答案】 ACD

【解析】【分析】

本题主要考查空间中点线面位置关系的判断,属于中档题.

利用线面、面面垂直的性质对选项——判断即可.

【解答】

解:对于A, $m \perp \alpha$, $n \perp \alpha$,

:.由线面垂直的性质可得 m//n ,故 A 正确;

对于 B, $m//\alpha$, $n//\alpha$, 则 m 与 n 可能异面或相交或平行, 故 B 错误;

对于 C, $\alpha \perp \beta$, $\alpha \cap \beta = l$, $m \subset \alpha$, $m \perp l$,

由面面垂直的性质定理知, $m \perp \beta$, 故 C 正确,

对于 D, 设 $\alpha \cap \delta = a$, $m \subset \delta$, $m//\alpha$,

则 m//a , 设 $\beta \cap \gamma = b$, $m \subset \gamma$, $m//\beta$,

则 m//b , $\therefore a//b$, 又 $b \subset \beta$, $a \not\subset \beta$,

则 $a//\beta$, 又 $a \subset \alpha$, $\alpha \cap \beta = l$, 则 a//l , 则 m//l , 故 D 正确,

故选 ACD.

11.【答案】AB

【解析】【分析】