计算机数据库的 备份与恢复技术 分析

汇报人:

2024-01-18

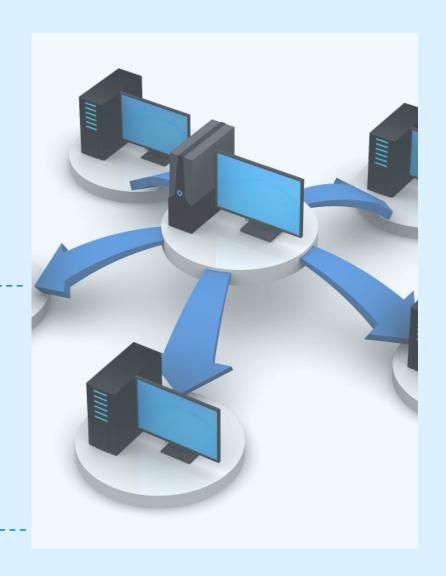
Ħ

录

- 数据库备份概述
- ・数据库恢复技术基础
- ・备份技术详解
- ・恢复技术实践与应用
- ・备份与恢复性能优化
- ・安全性和可靠性考虑
- ・总结与展望

O1 CATALOGUE

数据库备份概述


备份定义与重要性

备份定义

数据库备份是指将数据库中的数据和结构复制到另一存储介质中,以防止数据 丢失或损坏。

重要性

数据库是企业或组织的核心资产之一,任何数据丢失或损坏都可能导致严重的 业务中断和财务损失。通过备份,可以确保在发生硬件故障、人为错误或自然 灾害等情况下,能够快速恢复数据库到正常运行状态。

完全备份

备份整个数据库,包括数据和结构。恢复时只需还原完全备份文件即可。

增量备份

只备份自上次备份以来发生变化的 数据。恢复时需要还原最近一次完 全备份以及所有后续的增量备份。

差异备份

备份自上次完全备份以来发生变化 的数据。恢复时需要还原最近一次 完全备份以及最后一次差异备份。

根据业务需求选择备份类型

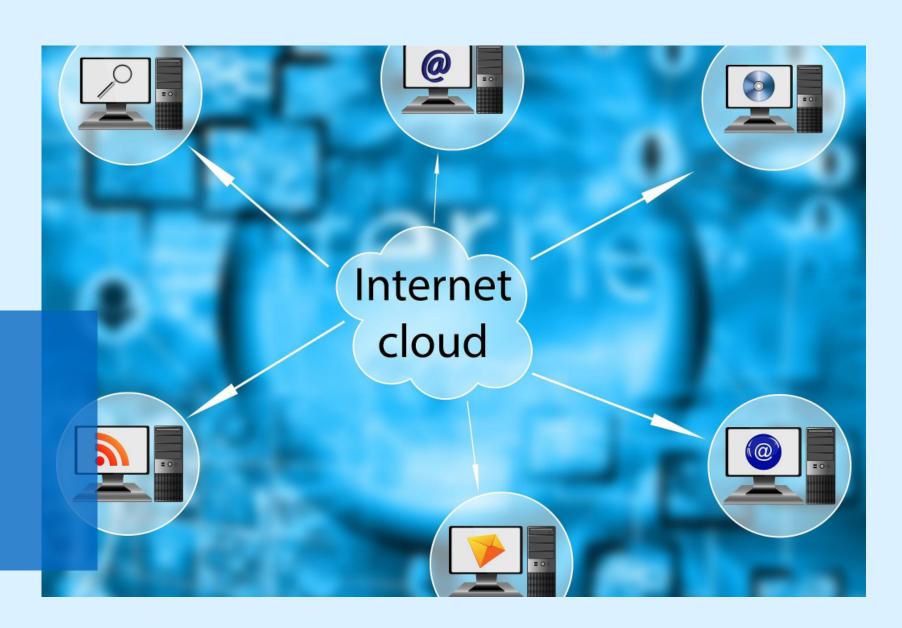
对于需要快速恢复的业务,可以选择完全备份;对于数据变化较大的业务,可以选择增量备份或差异备份。

定期评估和调整备份策略

随着业务的发展和数据量的增长,需要定期评估和 调整备份策略,以确保备份的效率和可靠性。

在选择备份策略时,需要综合考虑存储成本 和恢复时间等因素,以找到最适合的备份方案。 O2 CATALOGUE

数据库恢复技术基础


恢复原理及流程

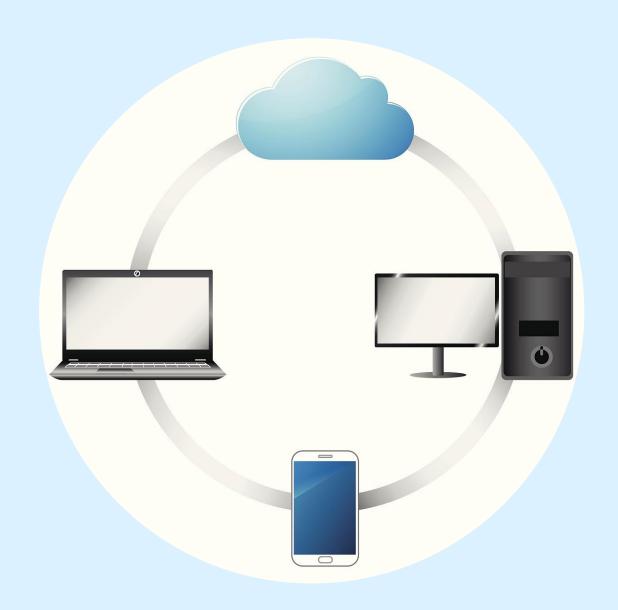
原理

数据库恢复技术基于数据冗余和事务 的原子性,通过备份数据和日志文件, 实现在系统故障或数据损坏时的数据 恢复。

流程

数据库恢复通常包括识别故障、评估 损失、选择恢复方法、执行恢复和验 证恢复结果等步骤。

● 基于备份的恢复


通过还原最近一次的有效备份,然后应用备份之后的所有日志来恢复到故障发生前的状态。

● 基于日志的恢复

利用数据库的日志文件,通过重放故障发生前的所有事务操作来恢复数据。

● 基于快照的恢复

利用数据库的快照功能,将数据库恢复到某个特定时间点的状态。

01

评估业务需求和恢 复目标

根据业务连续性需求和恢复时间目标(RTO)、数据恢复点目标(RPO)来制定恢复策略。

02

选择合适的备份和 恢复技术

根据数据量、变化频率、备份窗 口等因素,选择合适的备份技术 和恢复方法。 03

制定详细的恢复计划

包括备份计划、恢复步骤、测试计划等,以确保在实际故障发生时能够迅速有效地恢复数据。

O3
CATALOGUE

备份技术详解

定义

冷备份技术是在数据库关闭状态下进行的数据备份。

优点

备份文件一致性好,操作简单。

缺点

需要关闭数据库,影响业务连续性。

应用场景

适用于对数据库一致性要求高,且可容忍短暂停机的场景。

定义

热备份技术是在数据库运行状态下进行的数据备份。

优点

无需关闭数据库,对业务影响小。

缺点

备份文件可能存在不一致 性,操作复杂。

应用场景

适用于对业务连续性要求 高,且可容忍一定数据不 一致性的场景。

温备份技术

定义

温备份技术介于冷备份和热 备份之间,数据库在备份时 处于半关闭状态。

缺点

操作相对复杂,需要一定的技术支持。

优点

备份文件一致性较好,对业 务影响较小。

i

应用场景

适用于对数据库一致性和业务连续性都有一定要求的场景。

一致性

冷备份技术最好,热备份技术最差,温备份技术

操作复杂性

冷备份技术最简单,热备份技术最复杂,温备份

技术介于两者之间。

业务连续性

热备份技术最好,冷备份技术最差,温备份技术 介于两者之间。

应用场景

根据实际需求选择适合的备份技术,综合考虑一 致性、业务连续性和操作复杂性等因素。

O4CATALOGUE

恢复技术实践与应用

● 数据备份的重要性

在数据被误删除前,定期备份数据是恢复数据的基础。

● 数据恢复工具

使用专业的数据恢复工具,如R-Studio、EaseUS等,可以扫描并恢复被删除的数据。

● 数据库日志分析

通过分析数据库日志,可以找到被删除数据的痕迹, 进而进行恢复。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/375312301344011221