知识点26 导数的概念及运算(P3-19)

知识点27 导数的几何意义(P20-36)

知识点26 导数的概念及运算

1.导数的概念

a.函数f(x)在 $x = x_0$ 处的导数:如果当 $\Delta x \to 0$ 时,平均变化率① $\frac{\Delta y}{\Delta x}$ 无限趋近于

个确定的值,即 $\frac{\Delta y}{\Delta x}$ 有极限,则称y = f(x)在 $x = x_0$ 处可导,并把这个确定的值叫

做y = f(x)在 $x = x_0$ 处的导数(也称为瞬时变化率),记作 $f'(x_0)$ 或 $y'|_{x=x_0}$,即

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

b.函数 f(x) 的导函数:从求函数 y = f(x) 在 $x = x_0$ 处导数的过程可以看到,当 $x = x_0$ 时, $f'(x_0)$ 是一个唯一确定的数.这样,当 x 变化时,y = f'(x) 就是 x 的函数,我们称它为 y = f(x) 的导函数(简称导数). y = f(x) 的导函数有时也记作 y',即 f'(x) = y' = 2 $\frac{\lim_{\Lambda x \to 0} \frac{f(x + \Delta x) - f(x)}{\Lambda x}}{\Lambda x}$.

说明 函数y = f(x)的导数f'(x)反映了函数f(x)的瞬时变化趋势,其大小|f'(x)|反映了变化的快慢,|f'(x)|越大,函数在相应范围内变化得越快.

辨析比较

f'(x)与 $f'(x_0)$,[$f(x_0)$]'的区别与联系:f'(x)是一个函数, $f'(x_0)$ 是函数f'(x)在 x_0 处的函数值(常数),不一定为0,[$f(x_0)$]'是函数值 $f(x_0)$ 的导数,且[$f(x_0)$]' = 0.

2.导数的运算

(1)基本初等函数的导数公式

基本初等函数	导函数
	$\alpha x^{\alpha} R^{1}$
	f(x∳os ¥in x
	$f(x) = \cos x$
	$a_{\mathbf{a}}^{\mathbf{x}} \ln 0$
	a > 0

特别地,若 $f(x) = e^x$,则 $f'(x) = e^x$;若 $f(x) = \ln x$,则 $f'(x) = \frac{1}{x}$;若 $f(x) = \frac{1}{x}$,则

$$f'(x) = -\frac{1}{x^2}$$
.

(2)导数的四则运算法则

若
$$f'(x)$$
, $g'(x)$ 存在,则

i.
$$[f(x) \pm g(x)]' = 8 f'(x) \pm g'(x);$$

ii.
$$[f(x) \cdot g(x)]' = \underbrace{9}_{f'(x)} \underbrace{f'(x)g(x) + f(x)g'(x)}_{f(x)}$$

iii.
$$\left[\frac{f(x)}{g(x)}\right]' = 10$$
 $\frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} (g(x) \neq 0);$

iv.
$$[cf(x)]' = 1 - cf'(x)$$

规律总结

奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.

(3)复合函数的导数

复合函数y = f(g(x))的导数和函数y = f(u), u = g(x)的导数间的关系为 $y'_x = g(x)$

- ② $y'_u \cdot u'_x$, 即y对x的导数等于y对u的导数与u对x的导数的乘积.
- 注意(1)要分清每一步的求导是哪个变量对哪个变量的求导,不能混淆.
- (2)对于含有参数的函数,要分清哪个字母是变量,哪个字母是参数,参数是常量,其导数为零.

方法技巧

1.导数运算的技巧

连乘形式	先展开化为多项式的形式,再求导
分式形式	观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导
对数形式	先化为和、差的形式,再求导
根式形式 先化为分数指数幂的形式,再求导	
三角形式 先利用三角函数公式转化为和或差的形式,再求导	
复合形式	先确定复合关系,由外向内逐层求导,必要时可换元

2.对解析式形如 $f(x) = f'(x_0)g(x) + h(x)(x_0)$ 为常数)的函数求值问题,解题思路: 先求导数 f'(x),然后令 $x = x_0$,解关于 $f'(x_0)$ 的方程,即可得到 f'(x)的值, 进而得到 f(x), f'(x)再进行求解.

数材素材变式

1. 「多选] 「人A选必二P81练习第1题变式] 下列求导错误的是(ABD)

$$A.(\log_2 3)' = \frac{1}{3 \ln 3}$$

B.
$$[\ln(2x)]' = \frac{1}{2x}$$

$$C.(\sin^2 x)' = \sin 2x$$

A.
$$(\log_2 3)' = \frac{1}{2 \ln 2}$$
 B. $[\ln(2x)]' = \frac{1}{2x}$ C. $(\sin^2 x)' = \sin 2x$ D. $(\frac{\cos x}{x})' = \frac{\cos x + \sin x}{x^2}$

【解析】对于A: $(\log_2 3)' = 0$,故A错误.对于B: $[\ln(2x)]' = (\ln 2 + \ln x)' = (\ln 2)' + (\ln x)' = \frac{1}{x}$,(【另解】可

直接用复合函数求导法则,得 $[\ln(2x)]'=2\cdot\frac{1}{2x}=\frac{1}{x}$) 故B错误.对于C: $(\sin^2x)'=2\sin x\cos x=\sin 2x$, 故C正确.对

于D:
$$\left(\frac{\cos x}{x}\right)' = \frac{(\cos x)'x - x'\cos x}{x^2} = \frac{-\sin x \cdot x - \cos x}{x^2}$$
,故D错误.故选ABD.

2. [人A选必二P81习题5.2第3题变式] 已知函数 $f(x) = \begin{cases} x^3, x < 0, \\ \ln x, 0 < x < 1, \end{cases}$ 若f'(a) = 3,则 $a = \frac{-1$ 或 $\frac{1}{3}$.

【解析】 由题意得 $f'(x) = \begin{cases} 3x^2, x < 0, \\ \frac{1}{x}, 0 < x < 1. \end{cases}$ 当a < 0时, $3a^2 = 3$,解得a = -1或a = 1(舍去);当0 < a < 1时, $\frac{1}{a} = 3$,得 $a = \frac{1}{3}$.综上可知,a = -1或 $a = \frac{1}{3}$.

3. [人B选必三P91习题6-1C第2题变式] 已知函数 $f(x) = 2f'(3)x - \frac{2}{9}x^2 + \ln x(f'(x))$ 是f(x)的导函数) ,则f(1) = 1

(**D**)

A.
$$-\frac{20}{9}$$

B.
$$-\frac{11}{9}$$

$$C.\frac{7}{9}$$

$$D.\frac{16}{9}$$

【解析】第1步:求f'(x)

由题意得 $f'(x) = 2f'(3) - \frac{4}{9}x + \frac{1}{x}$,

第2步:求f′(3)

$$\therefore f'(3) = 2f'(3) - \frac{4}{3} + \frac{1}{3}, \ \textit{得}f'(3) = 1,$$

第3步: $\mathbf{x}f(x)$, 从而得值

$$\therefore f(x) = 2x - \frac{2}{9}x^2 + \ln x \, , \, \therefore f(1) = 2 - \frac{2}{9} = \frac{16}{9} \, ,$$
 故选D .

☞ 变式探究

已知函数 $f(x) = \sin \alpha \cos x$,且 $f'\left(\frac{\pi}{2}\right) = 1$,则 $f'\left(\frac{\pi}{3}\right) = \underline{\frac{\sqrt{3}}{2}}$

【解析】 易得 $f'(x) = -\sin \alpha \sin x$,(注意: $\sin \alpha$ 为常数,其导数为0)所以 $f'\left(\frac{\pi}{2}\right) = -\sin \alpha = 1$,所以 $f'\left(\frac{\pi}{3}\right) = -\sin \alpha \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$.

4. [人A选必二P70习题5.1第2题变式] 随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著的经济效益.假设在放射性同位素钍234的衰变过程中,其含量N(单位:贝克)与时间t(单位:天)满足函数关系 $N(t)=N_02^{-\frac{t}{24}}$,其中 N_0 为t=0时钍234的含量.已知t=24时,钍234含量的瞬时变化率为 $-8\ln 2$,则N(96)=(**⑤**

A.12 B.12ln 2 C.24 D.24ln 2

【解析】由 $N(t) = N_0 2^{-\frac{t}{24}}$,得 $N'(t) = N_0 2^{-\frac{t}{24}} \times \ln 2 \times \left(-\frac{1}{24}\right)$. $\therefore N'(24) = N_0 \times 2^{-\frac{24}{24}} \times \ln 2 \times \left(-\frac{1}{24}\right) = -8 \ln 2$,

 $\therefore N_0 = 2 \times 8 \times 24 = 384$, $\therefore N(t) = 384 \times 2^{-\frac{t}{24}}$, $\therefore N(96) = 384 \times 2^{-\frac{96}{24}} = 384 \times 2^{-4} = 24$,故选C.

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/386121001043011005