

- 1. 知道电能,知道用电能表测电能;认识电功,能计算电路中的电功.
- 2. 理解电功率和电流、电压、电阻之间的关系,掌握电功率的计算公式.
- 3. 能区分用电器的额定功率和实际功率,能计算用电器的功率.
 - 4. 会用伏安法测小灯泡的电功率和用电能表测算电功率.
- 5. 能通过实验探究,知道在电流一定时,导体消耗的电功率与导体的电阻成正比.
 - 6. 知道电流的热效应及焦耳定律.

一、电能和电功

- - 2. 电能:
- (1) 电能用 W 表示,常用单位是 $kW\cdot h$,能量的基本单位是 J _______,简称焦.1 $kW\cdot h$ = 3.6×10^6 J.
- (2)计算式: W=UIt=Pt.推导式: $W=I^2Rt$, $W=\frac{U^2}{2}$ (只适用于纯电阻电路).

- 3. 电能表:
- (1)作用:是测量一段时间内<u>消耗电能</u>的多少的仪器.
- (2) 读数方法: 电能表表盘上先后两次示数之差就是这段时间内用电的千瓦时数, 即电流在这段时间内所做的功.
 - 4. 电功: 电能转化为其他形式的能的过程就是

<u>电流做功</u>的过程,有多少电能发生了转化,就说电流做了多少功.国际单位也是焦耳,常用单位是千瓦时.

二、电功率

- $_{\underline{P}}$ 表示,单位是 $_{\underline{\Sigma}}$,简称 $_{\underline{\Sigma}}$,符号是 $_{\underline{W}}$.

常用单位有 kW,1 kW=_1000 W.

- 2. 定义:用电器在单位时间内____做功的多少___.
- 3. 定义式: $P=\frac{W}{t}$
- 4. 变形公式: P=UI 、 $P=\frac{U}{R}$ 、 $P=I^2R$.

三、电和热

- - 2. 应用: 电烙铁、电热毯、 <u>电热水器</u> 、电烤箱等.
- 3. 焦耳定律: 电流在导体上产生的热量与电流的平方成正比,与电阻成正比,与通电时间成正比,即 Q= I^2Rt

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/38807602005 7006063