"Teach A Level Maths" Vol. 2: A2 Core Modules

29: Volumes of Revolution

© Christine Crisp

Module C3	Module C4
AQA	Edexcel
OCR	MEI/OCR

"Certain images and/or photos on this presentation are the copyrighted property of JupiterImages and are being used with permission under license. These images and/or photos may not be copied or downloaded without permission from JupiterImages"

We'll first look at the area between the lines

Can you see what shape you will get if you rotate the area through 360° about the x-axis?

Ans: A cone (lying on its side)

We'll first look at the area between the lines

For this cone, r=1, $h=1 \implies V=\frac{1}{3}\pi$

The formula for the volume found by rotating any area about the x-axis is

where y = f(x) is the curve forming the upper edge of the area being rotated.

a and b are the x-coordinates at the left- and righthand edges of the area.

We leave the answers in terms of π

$$V = \pi \int_{a}^{b} y^{2} dx$$
We must substitute for y using $y = f(x)$ before
we integrate.
$$= \pi \left[\frac{x^{3}}{3} \right]_{0}^{0}$$

$$= \pi \left(\frac{1}{3} - 0 \right)$$

$$= \frac{1}{3} \pi$$

I'll outline the proof of the formula for you.

The formula can be proved by splitting the area into narrow strips . . . which are rotated about the x-axis.

Each tiny piece is approximately a cylinder (think of a penny on its side). Each piece, or element, has a volume $\approx \pi r^2 h = \pi y^2$

The formula can be proved by splitting the area into narrow strips . . . which are rotated about the x-axis.

Each tiny piece is approximately a cylinder (think of a penny on its side). Each piece, or element, has a volume $\approx \pi r^2 h = \pi y^2 dx$

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如 要下载或阅读全文,请访问: <u>https://d.book118.com/40711204506</u> 4006143