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For graph traversal applications, fine synchronization is re-
quired to exploit massive fine parallelism. However, in the
conventional solution using fine-grained locks, locks them-
selves suffer huge memory cost as well as poor locality for
inherent irregular access to vertices. In this paper, we pro-
pose a novel fine lock solution—-vLock. The key idea is
lock virtualization that maps the huge logical lock space to
a much smaller physical lock space that can reside in cache
during the program life cycle. Lock virtualization effectively
reduces lock incurred overheads of both memory cost and
cache misses. It also achieves high usability in legacy graph
programs, as from users’s view vLock is the same as lock
methods in Pthreads. We implement vLock as a Pthreads-
like library and evaluate its performance in four classical
graph algorithms (BFS,SSSP, ageRank). Experiments
on a SMP system with two In Westemere six-core proces-
sors show that, compared to conventional fine locks, vLock
significantly reduces locks’ cache misses and has compet-
itive performance. Particularly, PageRank with vLock has
about 20% performance improvement.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming–Parallel Program-
ming

General Terms Algorithms, Performance

Keywords Graph Algorithms, Fine Synchronization, vLock

1. Introduction
Large-scale graph ysis has become an important proce-
dure to mine valuable information in data-intensive appli-
cations such as web mining, socia work ysis, bioin-
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formatics, information retrieval and so on. Graph traversal
problems are notoriously difficult to optimize due to their in-
herent irregular computation behaviors. First, graphs in real
world are sparse and scale- . Generally the adjacency of
graph vertices is described by sparse matrix or list data struc-
ture. Access pattern of the sparse data structure is random
so that locality is hard to be exploit. In real-world appli-
cations the operations of irregular memory access are in-
tensive because the graph is composed of billions of ver-
tices and edges. Second, the graph is difficult to partition for
coarse-grained parallelism due to the irregular access pattern
and data dependency. A consensus is that there is massive
fine-grained parallelism during the course of graph traver-
sal. However, we observe two problems in the fine-grained
parallel implementations of graph algorithms.

• Low efficiency: In order to resolve conflicts of concur-
rent updates to the same vertex among parallel threads,
most of parallel graph libraries (e.g., SNAP [6], etc.)
use fine-grained locks for synchronization. However,
in graph traversal applications, the useful work on ver-
tices or edges concerns only some trivial operations,
e.g. changing their states or accumulation. In [22] Tu
et.al. profiled the execution of SSCA#2 ben ark [5]
where a scale- graph is traversed to calculate each
vertex’s betweenness centrality. They showed the useful
work of critical section is too small to amortize lock over-
head. Thus, efficient thread synchronization mechanism
is critical to performance of fine-grained parallel graph
algorithms. One solution is architectural support such as
word level Full-Empty Bits on Cray XMT [2] and SSB
on IBM Cyclops64 [24]. However, such special architec-
tural features are not available on commercial multi-core
architectures for general-purposes. Therefore, other so-
lutions to support fine-grained parallelism on multi-core
resort to software optimizations including programming
model and runtime system.

• Low usability: In order to overcome shortcomings of
lock mechanism, most recent popular work focuses
on lock- algorithms [12, 18], transactional mem-



ory [14, 15] and optimistic parallelism [16]. These ap-
proaches dedicate to speculatively eliminate redundant
synchronization, expecting higher performance. How-
ever, we note that it is not easy to adopt these approaches
in graph traversal. For example, generally a lock-
algorithm is difficult to be developed and reasoned for
correctness. Besides, programming for a lock- al-
gorithm is mu ore complicated than a conventional
lock-based algorithm. Conceptually, to some extent both
transactional memory and optimistic parallelism simplify
parallel programming by avoiding explicit lock synchro-
nization. In order to effectively support thread-level spec-
ulative execution, these approaches usually require spe-
cific hardware modification to existed architecture [13],
and thus require work or special compiling ef-
forts to match the hardware. In fact, if we port a parallel
software to these new programming models, there are
still a lot of legacy codes to be modified significantly.
Obviously, the low usability limits their popularity.

We attempt to seek for an approach to balancing between
performance and progr bility for develo efficient
fine-grained parallel graph programs on multi-core architec-
tures. By investigating various lock-based parallel graph al-
gorithms, we identify that source of inefficiency is the ir-
regular memory access pattern. Most fine-grained parallel
graph programs associate each vertex with a lock to resolve
conflicts so that lock operations result in amounts of extra
irregular memory accesses. Based on an important observa-
tion that the proportion of true conflict vertices is small at
each single level of graph traversal, we propose a lock virtu-
alization mechanism to reduce the number of irregular mem-
ory accesses while providing the same API with Pthreads.
As in the original fine-grained parallel program, each ver-
tex is associated with a lock. But, the difference is that the
lock is just a logical one. The lock virtualization mechanism
maps the huge logical lock space to a much smaller physi-
cal lock space which is small enough to be resident in cache
during the program life cycle. Because the virtualization is
a software mechanism, the cost of map strategy should
be as little as possible. With respect to speed advantage of
hash, we leverage a hash method to implement the map-

from logical lock space to physical one. Specifically,
the main contributions of this paper include:

• We design and implement a lock virtualization mecha-
nism vLock to develop fine-grained parallel graph pro-
grams. It consists of a lock virtualization layer and an
underlying spin lock array. By virtualization, vLock can
provide millions or even billions of fine-grained locks on
current shared memory multi-core tforms, with much
smaller cost of memory and higher cache performance
than conventional fine-grained locks.

• We provide a set of Pthreads-style APIs for the use of
vLock. With the interface, users can easily port a fine-

grained Pthreads-style parallel graph algorithms without
any change of the original program structure.

• We prove that a small and constant number of physical
lock entries could ensure low probability of lock races,
regardless of the graph scales.

• We evaluate vLock with four typical graph traversal
algorithms(BFS, CC, SSSP, PageRank) on multi-core
processors. vLock improves performance than the cor-
responding Pthreads-based program by 5% o age.
Particularly, for PageRank, vLock outperforms by 20%.

In the rest of this paper, we first introduce background of the
fine-grained parallel graph algorithm and outline our moti-
vations in section 2. In section 3 we propose our lock vir-
tualization methodology and its implementation. Section 4
presents a formal ysis of vLock. Section 5 reports our
experimental results. The related work is presented in sec-
tion 6. Finally, we conclude in section 7.

2. Background and Motivation
Traversal pattern is able to efficiently describe a broad
set of graph algorithms, including path exploration(e.g.,
search, shortest path, betweenness centrality) and i tive
algorithms(e.g., pagerank, connected component). In graph
traversal applications, vertices and edges are explored in
some order. Usually a traversal starts from a set of source
vertices, and then computes and activates the neighboring
vertices recursively. For a vertex v, computation on it could
be triggered by any incoming edge, and changes to v’s state
would trigger further computations on vertices connected by
v’s outgoing edges. In parallel graph traversal, generalized
breadth-first-search (BFS) is often adopted as a fundamental
framework, as depicted in Algorithm 1.

Algorithm 1: Breadth-first Graph Traversal Framework
Input : S: set of source vertices
Input : G: graph=(V,E)

1 Q: Queue of active vertices in current phase;
2 Q′: Queue of active vertices in next phase;
3 f(V ): Computation on vertex;
4 initialize the states of S;
5 Q.enqueue(S);
6 while Q 6= ∅ do
7 while Q 6= ∅ in parallel do
8 u←Q.dequeue();
9 foreach u’s outgoing edge (u, v) do

10 lock();
11 do some computation f(v);
12 unlock();
13 Q′.enqueue(v);

14 Q← Q′;
15 Q′.clear();

2.1 Fine-grained Parallelism
In graph traversal, once a vertex v’s state is changed over a
threshold, all of its outgoing edges are activated. Generally,
during the course, there are massive edges ready to handle



and multiple ready edges may compute on the same ver-
tex. For example, during B a typical real world graph,
there are millions of concurrent edges or vertices to be pro-
cessed in middle phases of traversal. Note that the compu-
tational workload is lightweight and usually involves only a
few simple arithmetic operations (i.e., accumulation, com-
paris c.). It means that the potential parallelism is mas-
sively fine-grained.

In multi-threading parallel mode, state of a vertex may
be concurrently updated through several incoming edges
by multiple threads, which requires synchronization to en-
sure its consistency. In order to exploit the massive fine
parallelism, it is needed to adopt fine synchronization. To
demonstrate this point, we consider two synchronization
schemes implementing lock and unlock in Algorithm 1:
CoarseLock that associates all vertices with one lock and
FineLock that associates each vertex with one lock. We
adopted multi-threaded BFS of Graph500 [1] and evaluated
on a SMP machine with two In Westmere 6-core pro-
cessors. As shown in Figure 1 (left), CoarseLock is not
scalable, whose speedup is less than 3 on 12 cores, while
FineLock achieves higher scalability, whose performance
is 3 times better than CoarseLock on 12 threads. It is
quite intuitive that fine-grained lock enables higher degree
of runtime parallelism than coarse-grained lock, and thus
has better scalability. The intuition is verified by lock con-
flict rate shown in Figure 1 (right). The lock conflict rate
of CoarseLock rises rapidly with increasing number of
threads and reaches more than 60% on 12 threads, while the
curve for FineLock keeps close to bottom.
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Figure 1. Results of B the graph of 224 vertices with
228 edges, where x-axis represents number of threads. (Left):
Performance, normalized to hread with CoarseLock;
(Right): L3 cac C) miss rate and lock conflict rate.

2.2 Motivation
In fact, the previous work of parallel graph algorithms on
shared memory architectures have already adopted the fine-
grained lock synchronization. However, conventional fined-
grained lock scheme still suffers two crucial problems.

First, in fine-grained lock scheme, each vertex is associ-
ated with a lock, and thus the memory space (storage) for
locks is proportional to the number of vertices. For a typ-
ical real world graph with more than hundreds of millions
vertices, memory cost for locks is too large, especially for
out-of-core algorithms. As we know, the size of graph data

(vertices and edges) itself is too large to be resident in mem-
ory space on most commodity computer system, the extra
space cost of locks makes this problem worse. Although
there are alternative hardware solutions like word-level ful-
l/empty bits attached to ea emory words [2, 24], they are
too expensive to be widely adopted.

locks

vertex 
states

v0
v1

v2

v3v4

v3 v4v0 v1v2

Figure 2. An illustration of memory access pattern.
Second, there is little cache locality for accessing the lock

memory space. Figure 2 illustrates B part of a graph,
where the program starts from vertex v1 to explore its neigh-
bors: {v2, v3, v4}. Data of these vertices are scattered in the
memory region. As access to vertex states, access to locks is
also random and noncontinuous. The irregular access pattern
in lock memory region results in extra cache misses. Con-
sider the BF ample again. As shown in Figure 1(right
figure), compared to coarse-grained lock, fine-grained lock
has significantly higher L3 cache miss rate and the gap has a
widening trend over increasing threads.

However, further investigation reveals an important ob-
servation: in graph traversal, the rate of runtime lock con-
flicts is very low. For example, in experiments of Figure 1,
even for 12 threads the lock conflict rate is as low as in an
order of 10−6. That means, most of lock operations are actu-
ally redundant and thus it is not necessary to associate each
vertex with a single lock. Obviously, this observation also
supports feasibility of speculative or optimistic parallelism.
As noted in the introduction, however, these approaches re-
quire major changes to the structure of the original paral-
lel programs. To be on the high usability side, instead we
propose a lock virtualization mechanism, vLock, that at-
tempts to build a seamless dock to the legacy codes using
fine-grained locks. In vLock, only a small number of phys-
ical lock entries are actually allocated, and virtualized to as-
sociate each vertex with a logical lock. Programmers think
the logical locks as conventional fine-grained locks, and thus
no need to change the structure of original codes.

3. Methodology
vLock is designed for parallel graph algorithms. Here we
first de he following notations used in next sections.

• O: object space,
• V: vertex space or virtual lock space,
• L: physical lock space,
• h: V→ L, return the lock of a specified vertex or address,
• addr: O→ A, return the address of a specified object,



• f : V→ ∗, do computation with updates on an object.

For clearness of further description, we also de he sce-
narios where vLock is used as follows. Assume O is the set
of objects. Each object o ∈ O is strictly associated with a
vertex v and can be indexed by v’ unique id, i.e., o serves as
a property of vertex v1. Physically, O is stored in an array.
In order to support concurrent operations on objects, each
o ∈ O is associated to a lock in V.

3.1 Virtualization Mechanism
Th essential idea of vLock is lock virtualization, that is logi-
cally each vertex is associated with a virtually exclusive lock
while physically multiple vertices may share the same lock.
Formally, we build a physical lock space, L, where |L| is
much smaller than |V| (or |O|). Virtual lock space is mapped
to L by some map function h. Figure 3 illustrates the
mechanism of vLock, where each set of virtual (logical)
locks sharing the same color are mapped to one physical lock
with that color. By virtualization, the huge virtual lock space
is projected to such a small physical lock space that can be
kept in cache.

%&'()*+ +-./ 01*.23 4
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Figure 3. An illustration of lock virtualization mechanism.

The above virtualization mechanism is transparent to
users, i.e., in the view of programmers, every vertex has
an exclusive lock. Thus, vLock promises the same pro-
gr bility as traditional fine-grained locks. Generally,
vLock provides a minimal set of primitives shown in Fig-
ure 4. The interface of vLock and semantics of its primitives
are the same as their counterparts in traditional fine locks. 2

Compared to traditional fine-grained locks, vLock sig-
nificantly reduces the memory space of locks. For example,
given a graph with 225 vertices, vLock needs only 8K en-
tries of physical locks that cost 32KB memory, while the
traditional fine-grained locks need 128MB memory.

Obviously, if the size of vLock (|L|) can be reduced
to be small enough, vLock has better cache performance.
However, reducing |L| risks increasing probability of lock
races. Fortuna y, in graph traversal algorithms, the scale

1 Similarly, O can be associated with edges and uniquely indexed by edge
id. In this paper, we don’t concern this case.
2 Note that the side effect of primitive trylock is different from that in
traditional fine-grained locks. In traditional fine locks, returning a failure
value implies some other thread is operating on v while in vLock it doesn’t.

property of real world graphs makes the pattern of ac-
cess to vertices random, which further ensures that a small
|L| suffices to keep probability of lock conflicts low enough.
This fact is the most important basis of vLock. It shall be
theoretically proved in section 4 and experimentally verified
in section 5.3. Another disadvantage of vLock is the over-
head of map approach in virtualization. In practice, we
adopt two simple but fairly efficient hash methods which will
be described later.

3.2 Implementation
3.2.1 API
In order to facilitate seamlessly portting the previous pro-
grams in Pthreads, vLock adopts the similar application
programming interface (API) with Pthreads library. Figure 4
lists the minimal basic lock functions in vLock library.
p t h r e a d v l o c k a t t r i n i t ( p t h r e a d v l o c k a t t r t ∗ a t t , i n t s i z e ) ;
p t h r e a d v l o c k a t t r d e s t r o y ( p t h r e a d v l o c k a t t r t ∗ a t t ) ;
p t h r e a d v l o c k i n i t ( p t h r e a d v l o c k t ∗ l o c k i d ,

p t h r e a d v l o c k a t t r t ∗ a t t ) ;
p t h r e a d v l o c k d e s t r o y ( p t h r e a d v l o c k t ∗ l o c k i d ) ;
p t h r e a d v l o c k l o c k ( u long v , p t h r e a d v l o c k t l o c k i d ) ;
p t h r e a d v l o c k u n l o c k ( u long v , p t h r e a d v l o c k t l o c k i d ) ;
p t h r e a d v l o c k t r y l o c k ( u long v , p t h r e a d v l o c k t l o c k i d ) ;

Figure 4. A minimal set of vLock API.
The usage of vLock is similar to the corresponding

lock methods in Pthreads, such as pthread mutex t and
pthread spinlock t . For example, the code shown in Fig-
ure 5 supports concurrent computation f on object o that
is associated to vertex v. Pthreads lock methods directly
operate on the allocated physical lock (i.e., mutex). In our
virtualization approach, the APIs “operate” a virtual lock
whose id is a long integer. The virtual lock id would use
either a vertex id or the address of an object, which can be
set by pthread vlockattr init function. In the simple exam-
ple, we used the default option, i.e., a vertex id based lock
virtualization.
pthread mutex init(&lock, NULL);
pthread mutex lock(&lock);
f(o);
pthread mutex unlock(&lock);

(a) Mutex lock

pthread vlock init(&lockid, NULL);
pthread vlock lock(v, lockid);
f(o);
pthread vlock unlock(v, lockid);

(b) vLock

Figure 5. An example of using vLock.

Note that vLock itself doesn’t support general usage
of nested locks. For the existence of physical lock sharing,
nested usage may lead to deadlock. For example, consider
such a situation where objects a, b ∈ O and h(a) = h(b).
Such a nested usage is an obvious deadlock:
p t h r e a d v l o c k l o c k ( a , 0 ) ; p t h r e a d v l o c k l o c k ( b , 0 ) ;
p t h r e a d v l o c k u n l o c k ( b , 0 ) ; p t h r e a d v l o c k u n l o c k ( a , 0 ) ;

However, vLock supports a special case of nested usage
that is enough for graph traversal algorithms. Suppose O1
and O2 are two disjoint sets of objects, which are mapped to
two different sets of vLocks with h1 : O1 → L1 and h2 :
O2 → L2 respectively, then such nested usage is safe:
p t h r e a d v l o c k l o c k ( a , 1 ) ; p t h r e a d v l o c k l o c k ( b , 2 ) ;
p t h r e a d v l o c k u n l o c k ( b , 2 ) ; p t h r e a d v l o c k u n l o c k ( a , 1 ) ;



3.2.2 Hash Map
In an implementation of lock virtualization in Figure 3, the
map function h ys a key role. In order to keep over-
head of lock virtualization low enough, vLock uses a simple
module operation to perform hash map . With a tradeoff
between performance and generality, we provide two hash
strategies: hash by vertex id and hash by object address.

Hash by vertex id is the default map method in
vLock. Generally, each vertex in graph is indexed by an
unique id of long integer. Any object is associated to a ver-
tex, so the virtual lock of an object can be uniquely indexed
by the vertex id. Thus, it is convenient to map virtual locks
to physical locks by vertex id. Because the vertex indices
are continuous integers, i.e., {0,1,2,...}, a hash function us-
ing module computation always maps vertices to physical
locks uniformly. Let the size of physical lock space (|L|) be
power of 2, then the module operation can be implemented
in the bit and operation, i.e., h(v) = v & (|L| − 1). This is
fast enough so that in practice its overhead can be neglected.

Hash by object address is a more general method, and
it is suitable for objects that can not be indexed by IDs.
In a shared memory multithreading application, the address
space is linear and any object can be uniquely identified
by its beginning address. In current mainstream systems,
address value is an unsigned integer of 64 bits. We denote
the address space as A and operation addr : O → A
returns the address of an object. Further, we define a new
hash function h : A → L . vLock adopts the hash function
h(addr(o)) = addr(o) mod |L|, where |L| must be prime.
In section 4.2, we shall prove that for a set of objects in array,
the above hash function maps their virtual locks to physical
locks uniformly.

The computation in hash by vertex id is an AND instruc-
tion of 64-bit integer, while in hash by object address it is an
DIV instruction of 64-bit integer. Take the processor(In
Xeon X5650) of our system as an example, the AND on 64-
bit integer costs 1 cycle, while the DIV on 64-bit integer
costs 70∼80 cycles [10]. Compared to hash by vertex id,
hash by object address has more overhead of hash compu-
tation. For common graph traversal algorithms, both meth-
ods work well, while for algorithms that intensively request
locks, such as PageRank, overhead of hash by address be-
comes significant. In the experimental evaluation, we shall
show performance of both methods.

3.2.3 Internals
vLock consists of two parts, the lock virtualization layer
and underlying lock implementation. An implementation of
vLock is decided by three parameters: the hash function h,
the lock space size |L|, and the underlying implementation
of locks. In our specific implementation of vLock for graph
traversal, we made the following key technical choices.

• In default, we adopt hash by vertex id, while hash by
object address can be configured by users.

• |L| is set as a constant value 8192 in default for our
experimental system, no matter the scale of graph. In 4.1,
we will give a theoretic proof that given the pattern of
random access to vertices, when the scale of vertex set
is large enough, the lock conflict rate no longer relies
on the number of vertices but the size of |L| and the
number of parallel threads which is at most the number
of processor cores. For a given system whose number of
cores is constant, to keep rate of lock conflicts under a
threshhold, the minimal value of |L| can be decided. For
a system with less than 16 cores, lock size of 8192 can
ensure conflict rate under 1.4% in the worst case.

• The internal physical lock adopts CAS-based spin lock.
For the fine granularity of vertex computation, punish-
ment of waiting for a busy lock is trivial. For this reason,
we adopt spin lock as the underlying implementation.
In fact, as a comparison, both mutex of Pthreads which
concerns potential system call cost and lightweight ticket
lock can’t achieve performance comparable to spin lock.

4. Theoretical ysis
Compared to conventional fine-grained lock methods, vLock
has the advantages of (1)less memory cost and (2)better
cache performance of locks, as well as the disadvantage of
(3)risks on punishment of extra lock conflicts. In this sec-
tion, we give a theoretical proof to the conclusion that: given
random access to large scale of virtual locks, there exist a
proper physical lock space size and a good hash function so
that the lock conflict rate can keep very low. Besides, we
prove that the hash functions used in vLock ensure uniform
distribution of objects(virtual locks) to physical lock space.

4.1 Lock Conflicts
In vLock, false lock conflict occurs when multiple different
objects share and concurrently request the same lock, which
never happens in conventional fine-grained locks.

THEOREM 4.1. Assume all accesses to objects are uni-
formly random, then probability of false lock conflict is at
most: A(|O|,t)

|O|t − A(|L|,t)
|L|t ,where t is the number of parallel

threads and A(n, k) is the number of different arrangements
of k from n items.

Proof. At any time point, for t threads th cess elements
of O tly, the number of all possible different
cases is |O|t, while the number of cases that have no conflicts
is A(|O|, t). Thus, the probability of non-conflicting access
to O is A(|O|,t)

|O|t , and further the probability of conflict access

to O is 1− A(|O|,t)
|O|t .

Meanwhile, as O is proportionally mapped to L, access
to L can be considered as uniformly random. Similarly, we
thus conclude that the probability of non-conflicting access
to L is A(|L|,t)

|L|t , and further the probability of conflict access

to L is 1− A(|L|,t)
|L|t .



A false lock conflict means a conflict occurring on locks
but meanwhile not on objects. Because in the hash map
relation h : O → L, |L| < |O| always holds, a conflict
access to O must induce a conflict on L but not vise versa.

To sum up, comb he above two partial conclusions,
we get the probability of locks’ false conflicts: (1−A(|L|,t)

|L|t )−
(1− A(|O|,t)

|O|t ) = A(|O|,t)
|O|t − A(|L|,t)

|L|t . ut

In reality, |O| is very large (e.g., greater than 224) so that
A(|O|,t)
|O|t is tightly close to and can be simply treated as 1. We

then have the following lemma.

LEMMA 4.2. If space of objects is large enough, then
(1) probability of false lock conflicts is approxima y equal
to that of overall lock conflicts, i.e., A(|O|,t)

|O|t − A(|L|,t)
|L|t =

1− A(|L|,t)
|L|t .

(2) lock conflict probability is no longer relevant to the size
of object space but only the size of locks (|L|) and the number
of threads (t).

Lemma 4.2-(2) is one of the theoretical foundations of
vLock. It reveals that for a system that has a given number
of hardware threads (t in the above ysis), we can choose
a constant value for lock space size to make sure the rate of
lock conflicts low enough, no matter how large scale of the
object space O would be.

Figure 6 shows the curve plotted according to the for-
mula in Lemma 4.2-(1). We can see that for given number of
parallel threads, with increasing lock space size, the conflict
rate falls quickly. For today’s typical multi-core processors
whose number of cores(or equivalently the um num-
ber of parallel threads) is less than 32, 8192 (or 8191) is a
nearly perfect value of lock size that can avoid most con-
flicts(e.g., conflict rate is lower than 5.88% for 32 threads
and lower than 1.45% for 16 threads) while keep memory
cost small enough. Actually, 8192 is the default value in our
experiments. Note that the above ysis assumes that all
threads issue lock requests simultaneously, which is more
harsh than real situations where lock requests are much less
intensive and thus has a lower conflict rate.

Lock Size
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Figure 6. Conflict probability, plot by the formula in
Lemma 4.2-(1). In the figure, t is the number of threads.

4.2 Hash Function
A good hash method should uniformly map virtual locks
to physical locks. In vLock, object space is far larger than
physical lock space, i.e., |O| � |L|. In order to reduce lock
races, the distribution of objects mapped to each lock should
be closely uniform.

For hash by vertex id where the vertex id set consists
of continuous integers, it is straightforward that a module
function maps virtual locks to physical locks uniformly. For
hash by object address, however, it needs more concerns.
Here we only consider the object set implemented as an
array, and the size of objec ement in memory is fixed.
Unlike integer index, memory addresses of a set of objects
are not continuous but incremental with a fixed stride. For
example, size of object in type integer is 4 bytes while that
of long type is 8 bytes. We here proved that with a dedicated
hash function, vLock can automatically handle variance of
object sizes and map objects uniformly to lock space.

THEOREM 4.3. Given (1) any object type whose size is fixed
as n bytes and (2) a lock space L, where |L| is a prime
number and |L| � n, hash function:

h(addr(o)) = addr(o)mod |L|, where o ∈ O

maps objects in O uniformly to the lock space L, no matter
the value of n.

Proof. Assume the base address of O is b and index of o in
O is k, then addr(O[k]) = b+ k ∗ n. Further,

h(addr(o)) = (b+ k ∗ n)mod |L|
= c+ k ∗ n mod |L|
= c+Xk

, where c = bmod |L| and Xk = k∗nmod |L|. Note that Xk

is a circular series as k is incremental one by one and n ∗ |L|
must be one of its periods. Since |L| is a pri mber, the
period of Xk is |L|, whi eans the distribution of o ∈ O
on L is uniform. ut

5. Evaluation
In this section, we have two objectives: (1) to verify vLock’s
advantage on performance over traditional fine-grained
locks, and (2) experimentally ex in why and how vLock
works well in graph traversal algorithms.

5.1 Experimental Setup
Our ben ark consists of four classic graph algorithms:
Breadth First Search (BFS), Single Source Shortest Path
(SSSP) [7, 19], Connected Component (CC) [20], and
PageRank [8]. All of them are implemented by the graph
traversal framework in Algorithm 1. All graphs used in this
section are scale and generated by the R-MAT [9] gen-
erator in Graph500 [1]. The graph scale is 224 vertices with



228 edges for PageRank, and 225 vertices with 229 edges for
other three algorithms.

Our experimental tform is a shared memory multi-core
system whose configuration is shown in Table 1.

Table 1. Experimental tform Configuration
Node SMP
# of processors 2
Memory size 24GB

Processor In Xeon X5650
# of cores 6
Frequency 2.67GHz
L1 Cache size 384K
L2 Cache size 1536K
L3 Cache size 12M
Memory Type DDR3-1333
QPI speed 6.4GB/s

Operating System CentOS 5.5
Compiler GCC 4.1.2

The performance evaluation is performed with three sets
of fine-grained parallel programs:

• FineLock: Using conventional fine-grained locks for
synchronizing current updates on vertices, i.e., each ver-
tex is associated with a single spinlock, as in most multi-
threaded graph libraries.

• vLock-Vtx: Using our vLock library configured with
hash-by-vertex-id.

• vLock-Add: Using our vLock library configured with
hash-by-vertex-address.

Both vLock-Vtx and vLock-Add adopt the default phys-
ical lock space size, 213, while Finelock can be consid-
ered as a special case of vLock-Vtx where physical lock
space size is number of vertices. All raw experimental results
are collected from 16 runs. Specifically, every time BFS and
SSSP begin from a different source vertex, while CC and
PageRank always begin i ting from all vertices.

5.2 Performance ysis
We use the four ben ark programs to evaluate the perfor-
mance of vLock and FineLock, and further yze with
detailed profiling data of lock conflicts and cache misses.

Figure 7 shows results of normalized performance of
vLock as well as FineLock, where FineLock serves
as baseline.3 Overall, vLock outperforms FineLock. For
BFS, CC and SSSP, vLock has an advantage of 4%∼8%
from 1 to 12 threads. Particularly, when all threads run on the
same socket (shown in Figure 7 as number of threads is no
more than 6), PageRank of vLock shows interesting results
that vLock-Vtx has considerable advantage of about 20%
while its counterpart of vLock-Add degrades performance.
The lost performance of vLock-Add is due to its high
cost of hash computation which is 70∼80 times higher than

3 For BFS and SSSP, normalized performance of each run is first calculated
and then used to compute their harmonic mean and deviation. For CC and
PageRank, however, the mean and standard deviation of runtime in all 16
runs are first calculated and then handled with normalization.

that in vLock-Vtx. Meanwhile, lock requests in PageRank
are mu ore frequent than others. Thus, in PageRank,
overhead of hash by address is rather expensive and exceeds
the benefits of lock virtualization itself.

Now we come to investigate the L3 cac C) misses.
As noted in the motivation section, vLock i pected to
improve cache performance by reducing the size of physical
lock space to be small enough to reside in cache. As shown
in Figure 8, compared to the conventional FineLock,
vLock significantly reduces number of LLC misses. The
reduction of misses is due to the improved hit rate of lock
accesses. Comparing Figure 8 and Figure 7, we found that
LLC miss times are closely matched with performance for
all four applications. Take PageRank as an example. When
all threads are in one processor socket, LLC miss times of
vLock is only about half of that in FineLock. Consid-
ered the expensive cost of LLC miss, it is not surprising that
performance of PageRank using vLock-Vtx is about 20%
better than the one using FineLock. As comparison, when
threads cross two sockets, gap of LLC miss times between
vLock and FineLock become narrow and so does the
performance gap of vLock and FineLock in PageRank.
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(d) PageRank

Figure 7. Comparison of performance normalized to case
of FineLock. The x-axis represents the number of threads.

Besides, we know that compared to FineLock, the main
disadvantage of vLock is the potential higher lock conflict
rate. Figure 9 summarizes the rates of lock conflicts. For
BFS, SSSP and CC, the conflict rates of FineLock are
obviously lower than that of vLock. However, their abso-
lute values keep very low (e.g., < 0.01% here), which is far
smaller than the estimated bound by Lemma 4.2-(1). This
means the overall overhead of lock races is low, and thus the
performance differenc ween vLock and FineLock is
primarily mainly decided by the difference of LLC misses,
which is demonstrated by the accordance of changes be-
tween LLC miss times and performance.
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(d) PageRank

Figure 8. Comparison of the number of cache misses. The
x-axis represents the number of threads.
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Figure 9. Comparison of lock conflict rates. The x-axis
represents the number of threads.

The final question is why vLock-Vtx can improve per-
formance of PageRank so much greater than other three
ben arks? The answer is the different frequency of lock
requests. For BFS, SSSP and CC, not all edges trigger com-
putation on their target vertices. For example, in BFS, an
edge (u, v) triggers lock request and computation on v only
when v is not visited. Similarly, in SSSP and CC, a com-
parison before lock requesting filters most of the redundant
requests from edges. Thus, for these three ben arks the
frequency of lock requests is comparatively low. However,
in PageRank there are no such filters to locks and each edge
triggers a vertex computation. Therefore, frequency of lock
requests is much higher than the others, whi akes per-
formance of the lock operation itself critical. On one hand,
as shown in Figure 9, for both FineLock and vLock,

lock conflict rate in PageRank is higher than others by one
order. However, the absolute value is still low enough(<
0.7%), whi eans the overhead of lock conflicts is still
low. On the other hand, as described before, for PageR-
ank vLock reduces t C miss times by a half, which
leads to significant memory performance boost. To sum up,
for vLock, benefits of cache performance improvement ex-
ceeds the increased overhead of comparatively higher lock
conflicts, which lets vLock-Vtx beat FineLock.

In summary, vLock performs better than conventional
FineLock in graph traversal algorithms, especially in the
situations where concurrent lock requests are frequent.

5.3 Impact of vLock Parameters
In this section, we use the BFS ben ark to experimen-
tally illustrate the characteristics of vLock and ta-
tively verify its design foundation. Particularly, we investi-
gate how different choices on physical lock space sizes and
hash functions affect performance of vLock over different
number of threads.

The results are shown in Figure 10. The x-axis represents
size of physical lock space. For hash by vertex, x in X-axis
means number of physical lock entries is 2x, while for hash
by object address it is 2x − 1.4

Fact 1: We first observe the execution time in Figure 10-
(a) and 10-(d). For different number of threads and hash
methods, the trends of run time are identical. With increasing
lock entries, curve of run time first falls, achieves an optimal
value, and then rises. This fact implies that with respect to
performance both coarse-grained lock and fine-grained lock
are not the optimal solution.

Fact 2: LLC misses, as shown in Figure 10-(b) and 10-
(e), have the same trend with run time over increasing phys-
ical lock space size. When the number of lock entries is
greater than 213, t C miss times increase nearly lineally.
As the cost of LLC miss leads to expensive external memory
access, it is a crucial factor affecting performance.

Fact 3: As shown in Figure 10-(c) and 10-(f), the lock
conflict rate falls sharply with increasing physical lock en-
tries. When the lock entries increase to more than 213, the
lock conflict occurs with a probability of less than 0.01%.
Obviously, lower lock conflict ra eads to higher degree
of parallelism and further better performance. However, as
shown, when the number of lock entries is more than 217,
the curve becomes smooth, whi eans benefits of further
increasing lock entries becomes trivial. Actually, as shown
in Figure 10, the conflict rate of 217 entries has been close
to conventional fine locks (one lock per vertex, 225 entries
here) with only a gap of 0.001%.

Comb he above three facts, we can conclude that (1)
when number of lock entries is small(e.g., < 213 in our ex-
periments), increasing it leads to slow extra LLC cache miss

4 The size of physical lock space should be a pri mber for hash by
address and be power of 2 for hash by vertex.
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Figure 10. Results of vLock in BFS. The x-axis represents physical lock space size that is 2x in (a)∼(c) and 2x−1 in (d)∼(f).

rising and fast lock conflict falling, which improves perfor-
mance, (2) when number of lock entries is big enough(e.g.,
> 213), further increasing it leads to fast extra LLC cache
miss rising and slow lock conflict falling, which degrades
performance, and (3) the best lock performance is achieved
when the number of the lock entries(e.g., > 213) gets a bal-
ance on LLC miss and lock conflict rate. In practice, we
only need to keep the lock conflict ra ow enough(generally
< 0.1%) , and the nearly optimal value of physical lock
space size can be estimated by Lemma 4.2-(2).

6. Related Work
There is a consensus that it is necessary to exploit fine-
grained parallelism of applications in the era of multi-/many-
core. The consequent question is how to support efficient
fine-grained synchronization. In communities of both aca-
demics and industry there have been a lot of hardware and
software attempts.

One class of hardware-based supports fine-
grained data synchronization in memory [4, 11, 24]. Among
these solutions, the most successful one is word-level Full-
Empty Bits(FEB) implemented in Cray XMT [2] (previously
MTA [11]) machines. In fact, Cray XMT perform cel-
lent for graph algorithms thanks to the effective fine-grained
data synchronization. However, the Cray solution requires
a customized DIMM structure that is too expensive to af-
ford for most users. Recently, on many-core architecture,
Zhu et.al. [24] proposed a clever technique called Synchro-
nization State Buffer (SSB). SSB was motivated by an ob-
servation, similar with ours, that at any instant only a small
fraction of memory locations involve in data synchroniza-
tion. Based on this observation, SSB adds a small piece of
buffer to each bank of on-chip memory (i.e., SRAM-like fast
memory), recording and managing states of frequently syn-
chronized data. In other words, SSB uses a small ”cache”

to perform the similar function of FEB. Besides, as these
fine-grained data synchronization mechanism needs to mod-
ify either memory or cache structure, it is not widely used in
commodity machines.

As noted in the motivation section, our observation also
supports feasibility of several emerging execution/program-
ming models like speculative parallelism [21], optimistic
parallelism [16] and transactional memory [14, 15]. Un-
doubtedly, these approaches can achiev ter performance
than Pthreads library more or less because of non-blocking
synchronization with speculative execution. However, a
common problem is that they require significant changes to
the program structure when we port a Pthreads-based paral-
lel program. Another efforts of software approaches primar-
ily focus on designing lock- algorithms [3, 12] and con-
current data structures [17, 18, 23] that leverage hardware
atomic instructions. Most lock- algorithms are designed
for specific situations and need complex algorithmic proof
to guarantee their correctness. In practice, lots of lock-
algorithms even perform worse than lock-based implemen-
tations. Actually, except for some common concurrent data
structures such as queues [18], linked list [23] and hash ta-
ble [17], lock- approach is far from ternative to lock
synchronization.
vLock is a virtualization solution of the fine-grained

lock synchronization on current commercial multi-core sys-
tems. Compared to the traditional fine-grained lock synchro-
nization approach, it provides the same semantics and pro-
gr bility while requires only a small amount of memory
and ensures better cache performance on multi-core proces-
sors. Compared to the above hardware approaches, vLock
provides the same synchronization functions without extra
programming efforts or special hardware support.



7. Conclusion and Future Work
In this paper, we presented a novel solution of fine-grained
locks—vLock, whose essential idea is lock virtualization.
Given large size of lock space and random access to locks,
compared to traditional fine-grained lock(e.g., spin lock in
Pthreads), vLock only needs a small amount of memory
cost and however achieves higher performance on multi-
core tforms. We evaluated vLock with four classic graph
traversal algorithms. As shown in experimental section,
vLock outperforms conventional fine-grained lock meth-
ods with obvious advantage. Particularly, for applications
with frequent lock requests, e.g., PageRank, vLock-Vtx
shows more than 20% improvement on performance.
vLock is comple y a software approach and provides

the same programming style with the traditional lock meth-
ods in Pthreads. Unlike other new programming models, the
adoption of vLock does not need to change program struc-
ture of the original Pthreads codes. Besides, vLock-Vtx
is more specific to graph algorithms while vLock-Add is
more general-purpose. However, vLock-Add’s hash func-
tion incurs high cost when lock request is frequent. In the
future, we shall investigate the possibility of hardware as-
sisted implementation.
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vLock:图遍历算法中利用细粒度并行性的锁虚拟化机制 1,2 谭光明 1 1,2 1 1 

1 计算技术 计算机体系结构国家重点  

2 大学 
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对于图遍历应用，需要精细同步才能利用大规模精细并行性。然而，在使用细粒度锁的传统解决方案中，锁本身会承受巨大的内存成本，并且对于固有的不规则

顶点 ，锁的局部性较差。在本文中，我们提出了一种新颖的细粒度锁解决方案 -vLock。关键思想是锁虚拟化，它将巨大的逻辑锁空间映射到可以在程序生命周期内

驻留在缓存中的小得多的物理锁空间。锁虚拟化有效地减少了锁带来的内存成本和缓存未命中的开销。它还在旧式图形程序中实现了高可用性，因为从用户的角度来看，

vLock 与 Pthreads 中的锁定方法相同。 vLock 实现为类似 Pthreads 的库，并在四种经典图形算法（BFS，SSSP， ageRank）中评估其性能。在具有两个 In

 Westemere 六核处理器的 SMP 系统上进行的实验表明，与传统的细锁相比，vLock 显着减少了锁缓存未命中，并且具有竞争力的性能。特别是，带有 vLock 的 PageRank

具有约 20％的性能提升。类别和 描述符 

D.1.3 [编程技术]：并发编程并行编程一般术语算法，性能 图算法，精细同步，vLock 

1.简介大规模图分析已成为数据密集型应用中挖掘有价值信息的重要程序，例如网络挖掘，社交网络分析，生物信息学允许免费 本作品的全部或部分用于个人或

课堂使用，前提是 或分发不是为了 或商业利益，并且副本在第一页上带有此通知和完整引文。否则， ，重新发布，发布在服务器上或重新分发到列表，需要

事先获得特定 和/或 。 
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信息学、信息检索等。图遍历问题由于其固有的不规则计算行为而难以优化。首先，现实世界中的图是稀疏和无标度的。通常，图顶点的邻接关系由稀疏矩阵或列表

数据结构描述。稀疏数据结构的 模式是随机的，因此很难利用局部性。在现实世界的应用中，由于图由数十亿个顶点和边组成，因此不规则内存 的操作是密集的。

其次，由于不规则的 模式和数据依赖性，图很难划分为粗粒度并行。一个共识是，在图的过程中存在大量的细粒度并行性遍历。然而，我们观察到图算法的细粒度并

行实现中存在两个问题。效率低下：为了解决并行线程间对同一顶点的并发更新 ，大多数并行图库（如 SNAP [6]等）都使用细粒度锁进行同步。然而，在图遍历应用

中，对顶点或边的有用工作仅涉及一些琐碎的操作，例如更改其状态或累积。在[22]中，Tu 等人分析了 SSCA#2 基准测试[5]的执行情况，其中遍历无标度图以计算每个顶

点的中介 性。他们表明临界区的有用工作太小，无法摊销锁开销。因此，高效的线程同步机制对于细粒度并行图算法的性能至关重要。一种解决方案是架构支持，例

如 Cray XMT [2]上的字级全空位和 IBM Cyclops64 [24]上的 SSB。然而，这种特殊的架构特性在 多核架构上不具备通用性。因此，支持多核细粒度并行性的其他解决

方案都依赖于软件优化，包括编程模型和运行时系统。可用性低：为了克服锁机制，最近的热门研究集中在无锁算法[12,18]、事务内存[14,15]和乐观并行[16]上。这些

方法致力于推测性地消除冗余同步，以期望获得更高的性能。然而，我们注意到在图遍历中采用这些方法并不容易。例如，通常难以开发和推理无锁算法的正确性。此外，

无锁算法的编程比传统的基于锁的算法复杂得多。从概念上讲，事务内存和乐观并行在某种程度上都通过避免显式锁同步来简化并行编程。为了有效地支持线程级推测执

行，这些方法通常需要对现有架构进行特定的硬件修改[13]，因此需要手动工作或特殊的编译工作来匹配硬件。事实上，如果 并行软件移植到这些新的编程模型上，

仍然有大量遗留代码需要进行重大修改。显然，低可用性限制了它们的普及。我们试图寻求一种在性能和可编程性之间取得平衡的方法，以便在多核架构上开发高效的细
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