第七章 粘度指数改进剂

Viscosity Index Improver(VII) $T6 \times \times$

第一节 概述

- 轴承特性因数 C= η N/P
- ■润滑时需要润滑油有足够的粘度。油品的 粘温性质对油品的使用有重要的影响。
- · 粘温性: 粘度随温度变化的程度。
- 发动机润滑油要求粘温性要好。原因: 低温起动和高温润滑的要求。

$$\frac{L-U}{L-H} \times 100$$

■ 描述润滑油粘温性的指标有: 粘度指数 (VI)

$$VI=0$$
~100时 $V\frac{L-U}{L-H} \times 100$

$$V \frac{10^N - 1}{0.00715} + 100$$

$$\frac{\log H - \log U}{\log Y}$$

- U— 试样在40℃条件下的运动粘度,mm²/S
- Y— 试样在100℃条件下的运动粘度,mm²/S
- H— 与试样在100℃运动粘度相同,粘度指数为 100的H标准油在40℃下的运动粘度,mm²/S
- L— 与试样在100℃运动粘度相同,粘度指数为0的L标准油在40℃下的运动粘度,mm²/S

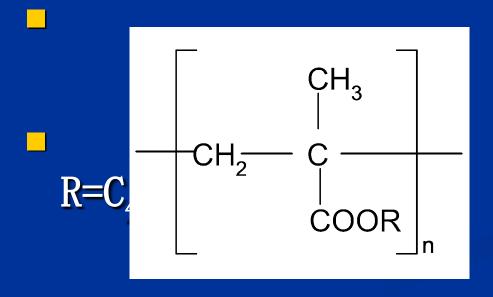
- 为改进润滑油的粘温性,提高粘度指数,早在30 年代即开始在液压油、火炮齿轮油中添加高分子 物质。
- VI改进剂主要用于配置多级油——冬、夏通用油。即在粘度较低的基础油中除添加一般改善其使用性能的添加剂外,再添加少量的VII,使其达到预定级别的发动机油,也叫稠化机油。

- 发动机油的粘度分类标准: SAE J300 粘度分类标准。
- 冬用油: 0W, 5W, 10W, 15W, 20W, 25W. 规定了低温粘度, 边界泵送温度, 倾点, 100℃最小粘度。
- 夏用油: 20,30,40,50,60. 规定了100℃最 小和最大粘度范围。
- 多级油: 5W/20,5W/30,10W/30,10W/40,15W/40
- VII还用于航空液压油,齿轮油,自动变速机油, 减震油等。使用量逐年增加,用途越来越多。

- 使用粘度指数改进剂(VII)可获得以下效益:
- 改善粘温性能: 粘度适合,可满足低温起动,高温润滑的要求。
- 省油: 与同粘度级别的单级油相比,润滑油消耗可降低27%,燃料消耗可降低3~5%。
- 简化油品,实现油品通用化。
- ■降低磨损: 比单级油显著降低轴承磨损。

第二节 粘度指数改进剂的种类和性能

- ■一、聚异丁烯(PIB)
- T603, 用裂解 C_4 作原料,用 $A1C1_3$ 或 $A1(i-C_4H_9)_3$ 作催化剂。低温聚合,精制得产品。 M=0.5~6万(数均)


$$nCH_{2} = C - CH_{3} - CH_{2} - CH_{2} - CH_{3} - CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

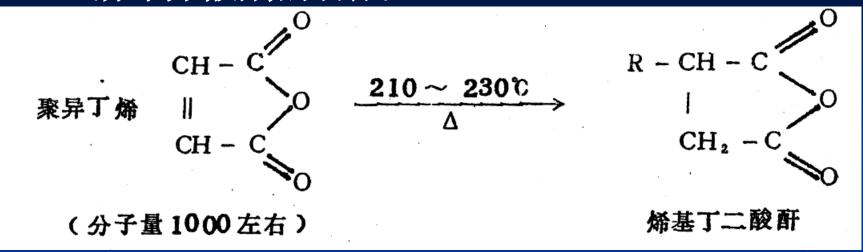
- PIB是用的最早的粘度指数改进剂,用于内燃机油的PIB分子量在5万左右。用于液压油和齿轮油的分子量在1万左右。
- PIB有优异的剪切稳定性和热氧化安定性,但低温性能较差。低温下粘度大,不能用于配置低温粘度级别(5W/30及以下)和大跨度的多级油。
- 目前PIB被OCP和PMA所代替。

- ■二、聚甲基丙烯酸酯 (PMA)
- T602, 用不同碳数的甲基丙烯酸酯单体为原料聚合而得。
- M=2~150万 有效含量: 40~50%
- ■用量: 0.5~1.0%(干)

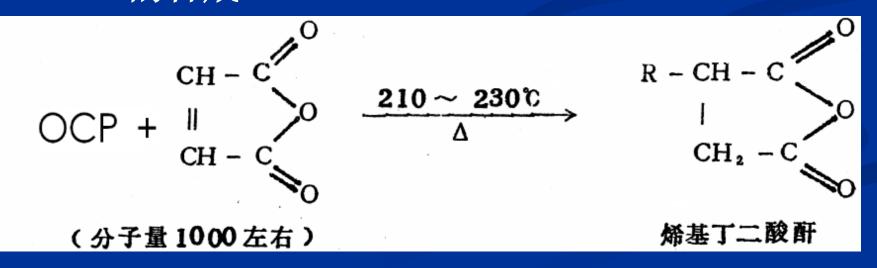
- R的结构对PMA的性能有较大的影响,通过改善R 基的平均碳数和碳数分布,分子量。可以得到一 系列用于不同目的增粘剂,增粘-降凝剂或降凝剂。
- 作为单一的VII,R的平均碳数为8~10。由低碳醇和高碳醇混合而成。这样得到的聚合物油溶性好,并能提供良好的粘温性能。作为增粘降凝双效剂,R的平均碳数为12~14,以C₁₄最好。若同时具有增粘、降凝、分散作用,需引入第三组分的含氮极性化合物。

- 用于内燃机油的PMA,M=15万左右
- 用于降凝剂的PMA, M=10万
- 用于液压油、齿轮油,M=2~3万
- PMA的低温性能好,氧化安定性好,改进粘度 指数性能好,抗剪切性能差。
- PMA使用与配置:高级汽油机油,数控液压油, 自动传动液。

- ■三、乙烯-丙烯共聚物(OCP)
- 0CP,又叫乙丙胶,是70年代发展起来的,价格适中,是目前世界上用的最多的一个品种。
- 国内目前主要有: T611(兰化产); T612(6.5), T612A(8.5), T613(11.5), T614(13.5), 干剂含量不同(茂名石化产)。


$$\begin{array}{c} -\left\{ \mathrm{CH_{2}}\mathrm{--CH_{2}}\right\} _{\mathrm{m}} \\ -\left[\mathrm{CH_{2}}\mathrm{--CH_{3}}\right] _{\mathrm{n}} \end{array}$$

- T611, 增粘能力好, 热稳定性好, 用于各种发动机油。
- T612, T612A ,具有高增粘能力,好的剪切稳定性和热稳定性,用于中高档汽油机油。
- T613, T614具有高增粘能力,好的剪切稳定性和热稳定性,适于调制中高档内燃机油及对剪切稳定性要求高的油品,主要用于柴油机油。
- OCP的增粘能力与剪切稳定性好,低温性能差一些。若配置低粘度的多级油,最好与酯型降凝剂复合来改善其低温性能。
- 用量: 0.5-1.5%(干剂)。


■ 0CP分子中乙烯含量过高,粘度指数较高,聚合物结晶度 增加,产品油溶性变差,低温易形成凝胶。丙烯含量过高 使聚合物侧链增多, 主链上碳数减少, 使增粘能力降低, 氧化安定性变坏。一般乙烯含量40~50%的OCP为无定形的 高聚物。目前国际上要求剪切稳定性指数SSI为25%,为达 此要求,需降低OCP分子量,而增粘能力也相对下降,加 入量就会增加,不仅使清净性变差,低温性能也变坏。为 达到该目标,80年代国际上研究出半结晶型0CP,在改善 剪切稳定性的同时也改进了增粘能力和低温性能。这种半 结晶OCP广泛用于国外基础油中。但不适合中国大庆原油 生产的含蜡量高的基础油,还干扰T803的使用。

■ 具有增粘/分散性能的分散型乙丙共聚物 DOCP (Dispersant OCP), 具分散功能,可降低分散剂的使用。国外SF、CE以上级别的油中,特别强调用DOCP,可降低总剂量。DOCP的合成使用马来酸酐与乙丙胶接枝反应,然后胺化。即将生产丁二酰亚胺的聚异丁烯用OCP代替。

清净分散剂的合成

DOCP的合成

胺化

R - CH - C
$$CH_{2}-C$$

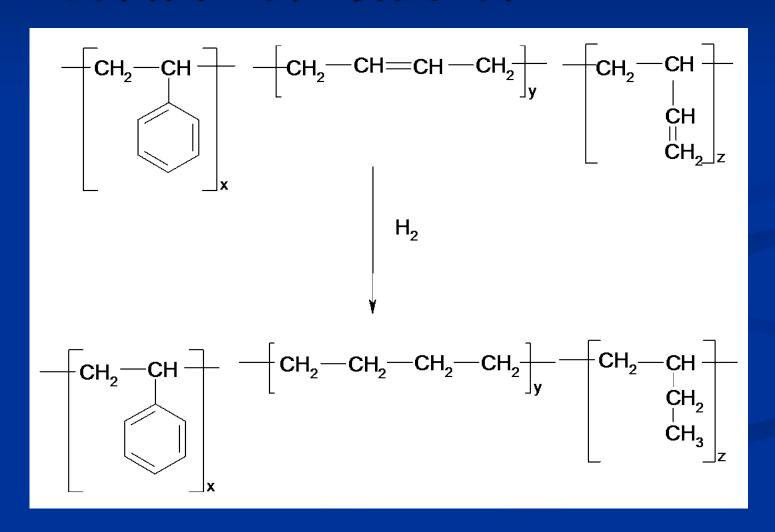
$$CH_{2}-C$$

$$O$$

$$R-CH-C$$

$$N+CH_{2}CH_{3}NH\rightarrow_{y}H$$

$$CH_{2}-C$$


$$O$$

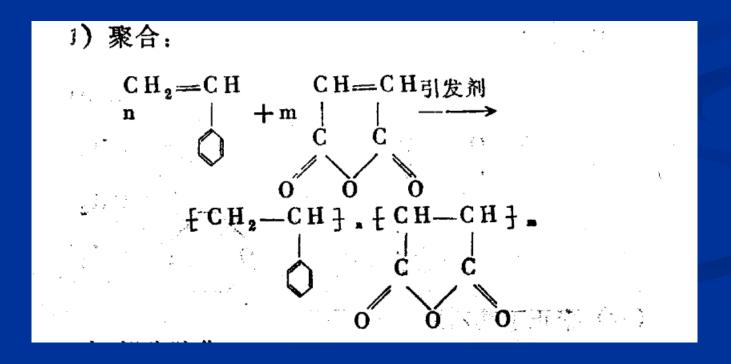
$$P-CH_{2}CH_{3}NH\rightarrow_{y}H$$

$$CH_{2}-C$$

$$O$$

- □四、氢化苯乙烯-双烯共聚物(HSD)
- ■双烯有丁二烯、异戊二烯。

- 以仲丁基锂作引发剂可得共聚物。用单体对引发剂的比例来控制分子量和分子量分布。加氢催化剂为环烷酸镍和三乙基铝,加氢的目的是改进其氧化安定性。
- 苯乙烯-双烯共聚物可以是无规共聚(加无规剂四氢呋喃),也可通过锂系催化剂生成的活性聚合物制成嵌段共聚物。共聚物中苯乙烯含量不超过25%。
- 无规共聚: ABBAABBBABBA
- 嵌段共聚: A A A A A B B B B B B B B
- 星形共聚: A-B-X-(-A-B-)-n
- 其中: A-----苯乙烯; B-----双烯; X-----偶合剂


- M=5~10万
- 具有分散功能的HSD正在研发中,没有工业化的产品。
- HSD抗剪切性能优异。增粘能力也很好,低温性较差。
- 如乙丙胶剪切稳定性指数 SSI=25%, HSD只有25%、15%、10%(SSI 越小越好)。
- HSD对含蜡基础油和降凝剂没有影响。国外 Lubrizol 和Infineum生产,国内无此产品。

- HSD的增粘能力强,使用HSD可以减少添加剂的用量,如以SSI为25%的无定型OCP的增粘能力为100%,则半结晶型OCP为138%,而She11公司开发的星形聚合物SV260高达173%,这就意味着SV260比相同剪切稳定性的无定型OCP的增粘能力高出70%,即用量只有OCP的60%。
- ■下表列出配制10W/40的汽油机油,用SG级复合剂, 100℃粘度相同,相同的CCS(低温动力粘度),不 同粘度指数改进剂用量的比较。

不同粘度指数改进剂用量的比较

干胶名 称	无定型 OCP	无定型 OCP	半结晶 型0CP	SV260 (星状)	SV250 (星状)	SV150 (嵌段)
干胶 用量	0. 92	1. 18	0.96	0.74	0. 98	1. 08
SSI	39	29	24	25	15	10

- ■五、苯乙烯聚酯
- 苯乙烯聚酯 (Styrene Polyester) 是Lubrizol公司 生产的具有一定分散性的酯型粘度指数改进剂, 低温性能较好,剪切稳定性较差,增粘能力也不 好。
- 合成方法:

部分胺化: CH₂CH—CH—CH ~~ 胺丙基马啉 ~-CH2-CH- $CH_2-CH_2-CH_2-N$ 3) 酯化:

- 一六、聚正丁基乙烯基醚(T601)
- ■聚正丁基乙烯基醚(T601),又名维尼波尔,分子量约1万左右,剪切稳定性和低温性能较好,热稳定性和增粘能力较差,适用于液压油中,不适用于内燃机油中,前苏联生产。国内60年代生产,现在用量较少。

■ 合成方法:

$$C_4H_9OH + CHCH \xrightarrow{BF_3 \cdot H_2O} CH_2=CH-O-C_4H_9$$

$$mCH_2=CH-O-C_4H_9 \xrightarrow{*\grave{o}KOH} CH_2-CH_n^+$$

$$s\grave{o}BF_3 \xrightarrow{O} CH_2-CH_n^+$$

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/416041211103010120