HFSS 2

实例──对称振子(dipole)

中心工作频率为 2.45GHz,天线臂为无限薄理想导体面,导体宽度为 5mm 。

完整的对称振子天线模型应该包括以下三个部分:

1、天线辐射臂; 2、激励端口; 3、空气腔。

这一节课我们通过例子,掌握以下几个方面知识:

1、完整细致的过程操作; 2、天线基本电参数; 3、结果可视化输出

一、新建并保存工程 dipole

Project Manager	→ X
⊢ dipole 	(DrivenModal)
Project	

二、长度单位设置为 mm , 求解类型设置为 Driven Modal

Set Model Units	×
Select upitor	1

三、建立模型

1、建立上臂: 切换至 zy 平面, 用矩形面, 建立对称振子的上半臂。

2、建立下臂:可重复以上操作一次,但这里介绍另外一种方法:旋转复制。选中已经建立的上辐射臂,从菜单中选择 Edit-Duplicate-Around Axis

Edi	t View Project Drav	v Modele	er HFSS Tools Wind
\square	Undo CreateRectangle	Ctrl+Z] a 😌 🖸 🛛 🧶 🕽
2	Redo	Ctrl+Y	
Ж	Cut	Ctrl+X	
	<u>C</u> opy	Ctrl+C	
6	<u>P</u> aste	Ctrl+V	Sheets
$ \mathbf{X} $	<u>D</u> elete	Delete	🖽 Unassi
	Rename	F2	
	<u>C</u> opy Image		Coordinate
	Delete Start Point		Planes
	Delete End Point		Lists
	<u>S</u> elect All Visible	Ctrl+A	
	<u>S</u> elect All		I HT
	<u>S</u> elect	•	
T	Select by Area Filter		
	Deselect All Ctrl+	Shift+A	
	<u>A</u> rrange	•	
-	<u>D</u> uplicate	•	tine <u>Along L</u> ine
3	<u>S</u> cale		🔁 Around <u>A</u> xis
	Properties		<u>⊿</u> irror

Duplicate Around Axis	
Axis: ⊙ × ○ Y ○ Z Angle: 180 ▼ deg ▼ Total number: 2	
Attach To Original Object: NOTE: When 'Attach to Original Object' is selected, face/edge assignments (e.g. boundaries/excitations) on duplicates will be lost, to ensure model consistency, when 'Total Number' is edited.	
OK Cancel	

在弹出的对话框中选择旋转轴 x,角度 180°,数量 2。点击 OK 确

定进行复制操作,在绘图历史树中出现新的结构 Rectangle1_1。

值得注意的是:由于下臂是与上臂是关联的,当改变上臂位置和尺寸

的时候,下臂也会相应的发生改变。

3、修改天线尺寸: 胸有成足是天线设计者必须要进入的状态, 即在

脑中虚拟天线的结构图和尺寸的取值范围。对于对称振子, 臂长为四

分之一波长是最重要的尺寸。对于工作于 2.45GHz 的对称振子, 四

分之一波长约为30mm,因此修改天线的长度为30mm。另一方面, 为了在上下臂之间建立馈电端口,两臂之间必须保留一窄缝,可将上 臂向+z 方向移动 2mm,即修改上臂位置坐标从(0,-10,0 变成 (0,-2.5)2 并按要求设定辐射臂宽度为 5mm 。

Properties: dipole - HFSSDesign1 - Modeler								
Conm	Conmand							
	Name	Value	Unit	Evaluated V	Description			
	Command	CreateRectangle						
	Coordinate	Global						
	Position	0,-2.5,2	mn	Omn , =2.5m				
	Axis	X						
	ISize	5	mn	5mn				
	ZSize	30	mn	30nm				
	Show Hidden							
					協会 即 進			
L					明正 取用			

4、建立与缝隙同样大小的矩形片作为理想馈电端口。

5、接下来我们建立六面体结构的空气腔,用四分之一波长估计一下

空气腔的尺寸,可设置为65*70*120。

提示:(1)可设置空气腔的透明属性,以显示整体模型;

(2) 打开菜单 View-Active View Visibil·it 站定空气腔为不显示,

方便观察和选择天线和端口。

- 6、设置材料和边界
- (1) 设置辐射臂边界为理想导体: 绘图历史树中同时选择上下臂, 点击鼠标右键打开快捷菜单,选择 Assign Boundary-Perfect · E·

弹出对话框中可以更改给边界命名,这里不作修改点击 OK,成功建

立后可以看到绘图历史树 Sheet-Perfect 中包含辐射上下臂。

Perfect E Boundary	×
Name: PerfE1	
Infinite Ground Plane	Sheets Perfect E Perfect E Rectangle1 Use Defaults
ОК	Cancel

(2)设置空气腔材料为空气: 绘图历史树中选择空气腔,右键快捷 菜单打开属性对话框。在 Search by Name 文本框中输入 air后在下 方选择,点击 OK 确定。成功设置后,绘图历史树中的 Solids-air 项包含空气腔(Box1)。

Search Paraneters Search by Nane air Search Criteria Relative Permittivity						
Δ	Nan e	Location	Origin	Relative Fermittivity	Relative Pernecbility	
air		SysLibrary	Naterials	1.0006	t. 0000004	C
AL2_03_coron	ic	SysLibrary	Meteriels	9.8	L	C
N_1		SysLibrary	Materials	8.8	L	C
alwina_92pc	t	SysLibrary	Materials	9.2	t	C
alunina_96pc	t	SysLibrary	Materials	9.4	L	С
alv alv alv Arlon 25N (to	Solids vacuum 	ysLibrary ysLibrary ysLibrary SysLibrary	Na S Na S Na Ma Na Materials	olids Fair 🖅 Box1 3. 28	21 21 21	3 0 0 0
* III * * * * * * * * * * * * * * * * *						

四、添加激励与求解项

1、添加端口激励:在绘图历史树中选择端口,右键快捷菜单中选择Assign Excitation-Lumped Port集总端口)

	View	
	Properties	
	Assign Boundary	·
	Assign Excitation	<u>W</u> ave Port
	Assign Mesh Operation	Lumped Port
	Plot Fields	Eloquet Port
	Plot Mesh	
		Incident Wave
		Voltage
		<u>C</u> urrent
		Magnetic Bias
< III		

弹出的对话框中可以指定端口特性阻抗。这里保持默认 50Ω不变, 并进行下一步设置。

Lumped Port : General	×
Name: 1	
Full Port Impedance	
Resistance 50 ohm 💌	
Reactance: O ohm 💌	
<u>Use Defaults</u>	
< 上一步 (B) 下一步 (A) > 取	则消

Lu	mped Port	: Modes		x	
	Number of	Modes 1			
	Mode	Integration Line	Characteristic Impedance	(Zo)	
	1	None 💌	Zpi		
		None New Line			
	u n c n				
	Use Defaults				
-					
		<	上一步(18) 下一步(03) >	取消	

然后选择在 IntergrationLine 下方选择 New Line, 进入积分线绘制模式。将起点选择为上边缘中点,终点为下边缘的中点。在最后,进行归一化设置,并完成激励设置。

Lumped Port : Post Processing	X
-Port Henormalization	- I
🔿 Do Not Renormalize	
G Renormalize All Modes	
Full Port Impedance 50 ohm 💌	

设置成功后在绘图历史树 Sheets-Lumped Port下包含端口模型。 2、设置辐射边界:在绘图历史树中选择空气腔(Box1),右键快捷 菜单选择 Assign Boundary-Radiation。选择 Radiating Only 项并点 OK 确认完成设置。

3、求解参数设置:从菜单打开 HFSS-Analysis Setup

	Apply Mesh Operations
Boundary Display (Solver View)	<u>C</u> lear Linked Data
Export Transfer File for <u>AINSYS</u>	
Design <u>P</u> roperties	+++++++1
Design Data <u>s</u> ets	

接下来出现的对话框 Solution Frequenc 中指定中心频率 2.45GHz,

其他保持默认确认。成功后在工程树 Analysis下出现 Setup1。

Solution Setup						
General Options Advanced Expression Cache Derivatives Defaults						
Setup Name: Setupi						
Solution Frequency 2.45 GHz V						
Adaptive Solutions						
Waximum Number of 6						
Maximum Delta S 0.02 ■						
O Use Matrix Convergence Set Magnitude and Phase						
Use Defaults						
Setupi						
· · · · · · · · · · · · · · · · · · ·						

4、扫频参数设置:紧接着在菜单打开 HFSS-Analysis Setup-Add Frequency Sweep,选择 Setup1,进入扫频设置。

HF	SS Tools Window Help	
	Solution Type	0 0 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10	List Validation Check Analyze All	LG⊡⊡⊒∎ ⊔⊔⊒⊿⊾
1	Bolt Notes BD Model Editor Set Object Temperature Design Settings	- AAA

Boundaries Excitations Mesh Operations	* * *	Ź	HH
Analysis <u>S</u> etup	×	ø	Add Solution Setup
Optimetrics Analysis	►	Ø	Add Frequency Sweep
Fields	►		List
<u>R</u> adiation	•		Revert to Initial Mesh
Results			Apply Mesh Operations
Boundary Display (Solver View) Export Transfer File for ANSYS		_	Clear Linked Data
Design <u>P</u> roperties		Ź	LAAA
Design Data <u>s</u> ets		4	THATH

在 Sweep Type 项选择 Fast, Start项为 2GHz , Stop 项为 3GHz , Step

Sweep Name:	Sweep1				🔽 Ena	ble
Sweep Туре:	Fast Discrete	•				
Frequency S	etu <mark>p Fasi</mark> Interpolating			Count	Frequency	Τ
Туре:	LinearStep	-		1	2GHz	1
				Z	2.05GHz	
Start	2	GHz 💌	Display >>	3	2.1GHz	1
Stop	3	GHz 🔻		4	2.15GHz	
	0.05			5	2.2GHz	
Step Size	0.05	GHz 💌		6	2.256Hz	
🖬 Cava Eir	lde			7	2.3GHz	
General	e Fields All Frequ	encie»				
General Time I	e Fields (All Frequ Domain Calculatio	encie:) on				
Generation Time I Interpolating	e Fields (All Frequ Domain Calculatio Sweep Options —	encie: on	– DC Extrapolatio	on Options		
Generate Time I Interpolating Max Solutio	e Fields (All Frequ Domain Calculatio Sweep Options — ns: 250	encie:	−DC Extrapolatio	on Options		
General Time I Time I Hax Solutio Error Tolera	e Fields (All Frequ Domain Calculatio Sweep Options — ns: 250 noe. 0.1	encie: m	- DC Extrapolation	n Options le to DC 50 Wed Frequency 10	0.7 GHz	-

Size为 0.05GHz, 点 OK 。在工程树 Setup1 下生成 Sweep1。

至此, 仿真前的流程基本完成, 接下来我们任务交给计算机仿真。仿 真前最好通过菜单 HFSS-Validation Check进行有效性检查。一切正 常便可以开动仿真了。

	HF	SS Tools Window Help	
		Solution <u>Type</u>	
		List	
	ø,	<u>V</u> alidation Check	
	.	Analy <u>z</u> e All	
U		Edit Notes	

Validation Check: dipole - HFSSDesign1	X
HFSSDesign1	 Design Settings 3D Model Boundaries and Excitations
Validation Check completed.	 Mesh Operations Analysis Setup
	 Optimetrics Radiation
Abort Close	

HF	S Tools Window Help
	Solution Type
	List
ø	<u>V</u> alidation Check
₽	Analy <u>z</u> e All
]	Edit <u>N</u> otes

等待仿真的过程中,可以在进度框中查看进度或者暂停和停止仿真。

×	dipole - HFSSD esign1 - Starting simulation engine for setup: Setup1 on Local Machine - RUNNING	
	Rad1	
ogress		
امًا		

当消息框出现仿真正常完成的消息之后,就可以生成结果了。

五、结果可视化输出

1、图形结果: 右键点击工程树 Result项, 选择 Create Modal Solution

Data Report,可以看到包括了矩形图、史密斯圆图和数据表格多种

类型的图形。例如,我们选择矩形图,按默认设置生成 S₁₁ 反射系数

随频率变化的二维图形。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如 要下载或阅读全文,请访问: <u>https://d.book118.com/41807606302</u> 0007003