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Abstract

Understanding biomolecular interactions is fundamental to advancing fields like drug discovery 
and protein design.  In this paper, we introduce Boltz-1, an open-source deep learning model 
incorporating innovations in model architecture, speed optimization, and data processing achieving 
AlphaFold3-level accuracy in predicting the 3D structures of biomolecular complexes.  Boltz-1 
demonstrates a performance on-par with state-of-the-art commercial models on a range of diverse 
benchmarks, setting a new benchmark for commercially accessible tools in structural biology. By 
releasing the training and inference code, model weights, datasets, and benchmarks under the MIT 
open license, we aim to foster global collaboration, accelerate discoveries, and provide a robust 
platform for advancing biomolecular modeling.
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Figure 1:   Example predictions of Boltz-1 on targets from the test set.

1     Overview

Biomolecular interactions drive almost all biological mechanisms, and our ability to understand these 
interactions guides the development of new therapeutics and the discovery of disease drivers.  In 2020, 
AlphaFold2 [Jumper et al., 2021] demonstrated that deep learning models can reach experimental 
accuracy for single-chain protein structure prediction on a large class of protein sequences.  However, 
a critical question about modeling biomolecular complexes in 3D space remained open.

In the past few years, the research community has made significant progress toward solving this piv- 
otal problem. In particular, the use of deep generative models has proven to be effective in modeling 
the interaction between different biomolecules with DiffDock  [Corso et al., 2022] showing signifi- 
cant improvements over traditional molecular docking approaches and, most recently, AlphaFold3 
[Abramson et al. ,  2024] reaching unprecedented accuracy in the prediction of arbitrary biomolecular 
complexes.

In this manuscript, we present Boltz-1, the first fully commercially accessible open-source model 
reaching AlphaFold3 reported levels of accuracy.  By making the training and inference code, model 
weights, datasets, and benchmarks freely available under the MIT license, we aim to empower re- 
searchers, developers, and organizations around the world to experiment, validate, and innovate with 
Boltz-1.   At  a high level,  Boltz-1 follows the general framework and architecture presented by 
Abramson et al. [2024], but it also presents several innovations which include:

1.  New algorithms to more efficiently and robustly pair MSAs, crop structure at training time, and 
condition predictions on user-defined binding pockets;

2.  Changes to the flow of the representations in the architecture and the diffusion training and 
inference procedures;

3.  Revision of the confidence model both in terms of architectural components as well as the framing 
of the task as a fine-tuning of the model’s trunk layers.

In the following sections, we detail these changes as well as benchmark the performance of Boltz-1 
with other publicly available models.  Our experimental results show that Boltz-1 delivers perfor- 
mance on par with the state-of-the-art commercial models on a wide range of structures and metrics.
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Given the dynamic nature of this open-source project, this manuscript and its linked GitHub reposi- 
tory1  will be regularly updated with improvements from our core team and the community. We aspire 
for this project and its associated codebase to serve as a catalyst for advancing our understanding of 
biomolecular interactions and a driver for the design of novel biomolecules.

1https://github.com/jwohlwend/boltz

https://github.com/jwohlwend/boltz
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2    Data pipeline

Boltz-1 operates on proteins represented by their amino acid sequence, ligands represented by their 
smiles strings (and covalent bonds), and nucleic acids represented by their genomic sequence.  This 
input is then augmented by adding multiple sequence alignment (MSA) and predicted molecular con- 
formations. Unlike AlphaFold3, we do not include input templates, due to their limited impact on 
the performance of large models.

In this section, we first outline how the structural training data, as well as the MSA and conformer, 
were obtained and describe the curation of our validation and test sets.   Then,  we  describe three 
important algorithmic developments applied to data curation and augmentation that we find to be 
critical:

1.  A new algorithm to pair MSAs for multimeric protein complexes from taxonomy information 
(2.3)

2.  A unified cropping algorithm that combines the spatial and contiguous cropping strategies used 
in previous work (2.4)

3.  A robust pocket-conditioning algorithm tailored to common use cases (2.5)

2.1    Data source and processing

PDB structural data   For training we use all PDB structures [Berman et al., 2000] released before 
2021-09-30  (same training cut-off date as AlphaFold3) and with a resolution of at least 9A˚ . We 
parse the Biological Assembly 1 from these structures from their mmCIF file.  For each polymer chain, 
we use the reference sequence and align it to the residues available in the structure.  For ligands, we 
use the CCD dictionary to create the conformers and to match atoms from the structure. We remove 
leaving atoms when (1) the ligand is covalently bound and (2) that atom does not appear in the PDB 
structure. Finally, we follow the same process as AlphaFold3 for data cleaning, which includes the 
ligand exclusion list, the minimum number of resolved residues, and the removal of clashing chains.

MSA and molecular conformers   We construct MSAs for the full PDB data using the colabfold   search 
tool [Mirdita et al., 2022] (which leverages MMseqs2 [Steinegger and S¨oding, 2017]), using default pa-

rameters (versions:  uniref30 2302, colabfold envdb 202108).  We then assign taxonomy labels to 
all UniRef sequences using the taxonomy annotation provided by UniProt [Consortium, 2015].  For the 
initial molecular conformers that are provided to the model, we pre-compute a single conformer for all 
CCD codes using the RDKit’s ETKDGv3 [Wang et al., 2022].

Structure prediction training pipeline   We train the structure prediction model (see Section 3.2 
for details of the confidence model training) for a total of 68k steps with a batch size of 128.  During 
the first 53k iterations, we use a crop size of 384 tokens and 3456 atoms and draw structures equally 
from the PDB dataset and the OpenFold distillation dataset (approximately 270K structures, using the 
MSAs they provided) [Ahdritz et al.,2024].  For the last 15k iterations, we only sampled from the PDB 
structures and had a crop size of 512 tokens and 4608 atoms.  As a comparison AlphaFol3 trained a 
similar architecture for nearly 150k steps with a batch size of 256, which required approximately four 
times the computing time. We attribute some of this drastic reduction to the various innovations we

detail in the remainder of this section and the next.

2.2    Validation and test sets curation
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To address the absence of a standardized benchmark for all-atom structures, we are releasing a new 
PDB split designed to help the community converge on reliable and consistent benchmarks for all-atom 
structure prediction tasks.

Our training, validation and test splitting strategy largely follows Abramson et al.  [2024].  We first 
cluster the protein sequences in PDB by sequence identity with the command mmseqs  easy-cluster

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如要下

载或阅读全文，请访问：

https://d.book118.com/436011101233011001

https://d.book118.com/436011101233011001

