Chapter 6

Determinants

Overview

In this chapter we introduce idea of the determinant of a square matrix. We also investigate some of the properties of the determinant. For example, a square matrix is singular if and only if its determinant is zero.

Core sections

- Cofactor expansions of determinants
- Elementary operations and determinants
- Cramer's rule
- Applications of determinants: inverses and Wronskians

6.2 Cofactor expansions of determinants

If A is an $(n \times n)$ matrix, the determinant of A, denoted det(A) or |A|, is a number that we associate with A. determinants are usually defined either in terms of *cofactors* or in terms of *permutations*.

Definition6.2.1: Let $A = (a_{ij})$ be a (2×2) matrix. The determinant of A is given by

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

The method of (2×2) determinants:

The method of (3×3) determinants:

Definition6.2.2: Let $A=(a_{ij})$ be an $(n \times n)$ matrix, and let M_{rs} denote the $[(n-1)\times(n-1)]$ matrix obtained by deleting the *r*th row and *s*th column form *A*. then M_{rs} is called a **minor matrix** of *A*, and the number det (M_{rs}) is the minor of the (r,s)th entry, a_{rs} . In addition, the numbers

$$A_{ij} = (-1)^{i+j} \det(M_{ij})$$

are called cofactors (or signed minors).

Example1: Determine the minor matrices M_{11} , M_{23} , and M_{32} for the matrix A given by

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & -3 \\ 4 & 5 & 1 \end{bmatrix}.$$

Definition6.2.2: Let $A=(a_{ij})$ be an $(n \times n)$ matrix. Then the determinant of A is

$$det(A) = a_{11}A_{11} + a_{12}A_{12} + L + a_{1n}A_{1n};$$

$$det(A) = a_{i1}A_{i1} + a_{i2}A_{i2} + L + a_{in}A_{in};$$

$$det(A) = a_{1j}A_{1j} + a_{2j}A_{2j} + L + a_{nj}A_{nj};$$

where A_{ii} is the cofactor of a_{ii} .

Example2: Compute det(A), where

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & -3 \\ 4 & 5 & 1 \end{bmatrix}.$$

Example3: Compute the determinant of the lower-triangular matrix *T*, where

$$T = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 3 & 2 & 0 \\ 1 & 4 & 5 & 1 \end{bmatrix}$$

Theorem6.2.1: Let $T=(t_{ij})$ be an $(n \times n)$ lower-triangular matrix. Then the determinant of T is

$$\det(T) = t_{11}t_{22}t_{33} L t_{nn}.$$

Obviously det(I) = 1.

6.2 Exercise: P₄₅₄ 21,34

6.3 Elementary operations and determinants

1. Elementary operations

Theorem 6.3.1: Let $A = (a_{ij})$ be an $(n \times n)$ matrix, then

 $\det(A^T) = \det(A).$

Theorem6.3.2: Let $A=(a_{ij})$ be an $(n \times n)$ matrix. If **B** is obtained from A by interchanging two columns (or rows) of A, then

$$\det(B) = -\det(A).$$

$$D = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \cdots & \cdots & \cdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = -D' = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Theorem6.3.3: Let $A=(a_{ij})$ be an $(n \times n)$ matrix and B is the $(n \times n)$ matrix resulting from multiplying the *i*th row (or column) of A by a scalar k, then

 $\det(B) = k \det(A).$

 $\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ ka_{i1} & ka_{i2} & \cdots & ka_{in} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$

Corollary: Let $A=(a_{ij})$ be an $(n \times n)$ matrix and let k be a scalar. Then

$$\det(kA) = k^n \det(A).$$

Theorem6.3.4: Let A, B, C are $(n \times n)$ matrices that are equal except that the *i*th row (or column) of A is equal to the sum of the *i*th row (or column) of B and C, then

 $\det(A) = \det(B) + \det(C).$

Theorem6.3.5: Let A be an $(n \times n)$ matrix, and if a multiple of the *i*th row (or column) is added to the *j*th row (or column), then the determinant is not changed.

 a_{11} a_{1n} a_{1n} a_{11} a_{12} a_{in} a_{i1} a_{i2} a_{i1} a_{in} a_{i2} $\times k$ a_{jn} a_{j1} $a_{i1} + ka_{i1}$ $a_{i2} + ka_{i2}$ $a_{in} + k$ a_{n1} a_{nn} a_{nn} a_{n1} a_{n2}

Corollary: Let A be an $(n \times n)$ matrix, and if the *i*th row (or column) is a multiple of the *j*th row (or column) of A, then the determinant is zero.

Theorem6.3.6: *A* is an $(n \times n)$ singular matrix if and only if the determinant of *A* is zero.

Theorem 6.3.7: If *A* and *B* are $(n \times n)$ matrices, then det(AB) = det(A)det(B).

Theorem6.3.8: If the (*n*×*n*) matrix *A* is nonsingular, then

$$\det(A) \neq 0$$
, and $\det(A^{-1}) = \frac{1}{\det(A)}$.

2. Calculate determinants by using properties

(1) Object: Transform matrix to upper(or lower)-triangular matrix by using elementary operation;

(2) Instrument: Creating 1 and 0 by using properties of determinants;

(3) Principle: Elementary operation and properties of determinants.

Example1: Calculate determinant

$$= \begin{vmatrix} 1 & 1 & 1 & 7 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -19 \end{vmatrix} = -19$$

Example2:
$$D = \begin{vmatrix} 1991 & 1992 & 1993 \\ 1994 & 1995 & 1996 \\ 1997 & 1998 & 1999 \end{vmatrix}$$

Solution: $D = \begin{vmatrix} 1991 & 1 & 1 \\ 1994 & 1 & 1 \\ 1997 & 1 & 1 \end{vmatrix} = 0$
Example3: $D = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix} = \begin{vmatrix} 10 & 10 & 10 & 10 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}$

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: <u>https://d.book118.com/437006046161006144</u>